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Letter from the Editor

Dear reader,
Welcome to the 0t issue of Cardinality: a celebration of the Stanford undergraduate mathematics community.

The idea for this magazine started over a year ago, when we asked: what if we collected people’s WIM (writing-in-
the-major) papers or senior honors theses to put them in one place? The idea soon extended to include a broader
scope of mathematical work: expository papers, research papers, mathematical art, and more.

At its core, we wanted this to showcase the brilliance and diversity of the Stanford undergraduate mathematics
community. So, when Aaryan suggested the name Cardinality, we ran with it.

This 0t issue is a proof of concept, the beginning of an idea. In their article, Cardinality and Infinity, Aaryan
Sukhadia '25 writes about infinite cardinalities and the unsolvability of the halting problem: “Turing’s answer to the
halting problem, rather than being a death knell, told us that there would always be more mathematics to do. In
answering one question we raise several more; in proving one result we motivate several more.” This ethos is shared
in Eric Gao's '25 article Try Trisecting Triangles, on the constructibility of various real numbers by straightedge and
compass. By recasting constructibility in terms of the algebraic machinery of field extensions, we can easily answer
classical questions about trisecting angles or doubling cubes in the negative. Try all you want, but some angles can’t
be trisected.

In contrast, sometimes all it takes to understand a problem is finding a clever application of a well-known fact. Justin
Wu 25 writes about clever applications of the pigeonhole principle to problems in information theory, number theory,
and combinatorics, exemplifying the philosophical style of a branch of combinatorics called Ramsey theory.

Yet, there is more to mathematics than just building abstract theory and coming up with clever arguments. Mathe-
matics is done by people, for people, with people—and nowhere is this humanistic spirit more clear than in art. As
such, we're proud to include superb visual art, custom-made for each article, by our graphics editors Kae Heller '27
and Paul Gontard '27. In addition, Karen Ge's 23 poem Instructions on Finishing Your Math Homework eloquently
captures the phenomenological character of doing mathematics: “Think about love, about the way it dissolves into
a blank page and finds itself again in your mistakes.”

This 0th issue has been a labor of love—love that finds itself in the minutiae of equation spacing and punctuation,
love that finds itself in the arresting beauty of pure mathematics, but above all, love that finds itself in the pride of
being a part of this community.

My deepest gratitude to everyone who has contributed to this issue, big or small. Now let us celebrate.
Best wishes,

Andrew Lee '25

Editor-in-Chief
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Cérdinality and Infinity

Aaryan Sukhadia

1 Precursor: Hilbert's Entschei-
dungsproblem

Before LED screens or mouse cursors existed, David
Hilbert, one of the eminent mathematicians of the 21st
century, dreamed of an algorithm that could be given any
set of axioms, along with a statement, and could return if
that statement was true given the axioms (putting every
mathematician out of a job). Unfortunately for Hilbert
(and fortunately for future job-seeking mathematicians),
Alonzo Church came by in 1935 to show this was im-
possible. To add insult to injury, his PhD student, Alan
Turing, gave a different proof that this was impossible
only a year later in 1936. He achieved this by reducing
the problem to a different one, and proving the following
theorem:

Theorem 1.1. There is no Turing machine that can de-
cide whether or not a given Turing machine will run for-
ever.

Amazingly, Alan Turing was able to produce a robust the-
ory of computer science before computers ever existed.
His theoretical framework for describing what a computer
could do was known as a Turing machine. A Turing ma-
chine has a specific way of reading inputs and computing
outputs, but for our purposes we can think of any modern
program as a Turing machine, as they are general enough
to be equivalent. In fact, a stronger result is true: virtu-
ally any model of computation is equivalent to a Turing
machine.

This is the halting problem: given a program P and
an input for P, is there a program that can determine
whether P will eventually terminate or continue running
forever? Theorem 1.1 tells us the answer is no.

Remark. We will be making the assumption that these
programs have infinite memory allocated to them. If
memory was finite, we would only have a finite number
of configurations to check, and we could easily deduce if
a program would terminate or continue forever in some

sort of loop.

Our journey through this problem will take us to the in-
finite, via the lens of cardinality, and lead us into some
interesting questions as we do so.

2 Grasping Infinity

Definition 2.1. Two sets A, B have the same cardinal-
ity if there exists a bijection f : A = B. The cardinality
of A is denoted |A].

Another way to say this is that A and B are equinumer-
ous, which we denote by A ~ B. For finite sets, this
concept is fairly intuitive, but it becomes a little more
nuanced when working with infinite sets.

2.1 Examples

We can find a bijection f : N 5 Z as follows:

if n even,

1) —{ 20-1 if p odd,

2
This is a classic example of a well-known quirk of infi-
nite sets: they can be equinumerous to a proper sub-
set of themselves. The German mathematician Richard
Dedekind believed that this was a defining property of
what it meant for a set to be infinite.

Definition 2.2. A set that is equinumerous to a proper
subset of itself is called Dedekind infinite.

This definition coincides with the standard notion of in-
finite if and only if we assume the axiom of choice.

Question 1. How would one rigorously define the “stan-
dard” notion of what it means for a set to be infinite?

Perhaps even more surprisingly, N is not only equinu-
merous to Z, but also to Q, the rationals. We can find
this bijection by listing out every rational number in a
well-defined order. We can order then first by sum of
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numerator and denominator in lowest form, then numer-
ator, then denominator. For example, our ordering would
start off like:
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Then we can assign a unique natural number to every
rational number simply by their position in this order,

giving us our bijection.

Question 2. The astute reader will have noticed that the
above bijection entirely neglects the negative rationals!
What small modification can be made to the argument
to include them?

Considering that the rationals are a dense subset of the
real line (i.e., you can always find infinitely many rationals
in however small an interval you choose), the more you
think about the fact that they are equinumerous to N the
more absurd the notion becomes. Far more absurd, then,
is the fact that Q, the set of algebraic numbers (solutions
to polynomials with rational coefficients) is equinumer-
ous to N. This not only includes all of the rationals but
also a lot of irrationals and complex numbers like v/2, ¢,
and 7i. Try to see if you can come up with the bijec-
tion yourself (Hint: a solution to a Q-polynomial is also
a solution to a Z-polynomial!)

Definition 2.3. The cardinality of N,Z, Q, and Q is
denoted N (pronounced ‘aleph null’).

The notation above should seem suggestive. If we are
suggesting that the size of these infinite sets deserves a
“zeroeth subscript,” what does that imply for the notion
of infinite sizes? As we'll see, mathematicians weren't
simply content with grasping and making rigorous the
notion of infinity. They wanted to go beyond.

3 Infinitifying Infinity

Definition 3.1. Given a set X, the power set of X,
denoted p(X), is the set of all subsets of X.

Theorem 3.2 (Cantor's Theorem). A set X cannot have
the same cardinality as its power set.

Example 3.3. The above result should feel somewhat in-
tuitive for finite sets, and let’s check this. Let’s do the set
with just one element in it, {a}. The subsets of this set
are itself, and the empty set (). Thus p({a}) = {0,{a}},
which we leave to the reader to check has greater cardi-
nality than the original set.

Question 3. Try generalizing: for a finite set with n ele-
ments, how many elements should the power set have?

Proof of[3.2 By method of “exercise for the reader,” we
have dealt with the (perhaps obvious) case of finite sets,
but in the world of the infinite nothing can be assumed
to be “obvious” when it comes to cardinality.

Assume for sake of contradiction that they do have the
same cardinality, in which case there must exist a bijec-
tion S : X = p(X) (we use S as in the “set assigned

to 2""). Since p(X) is the set of subsets of X, for any
x € X there are two possibilities, either x € S(z) or
x ¢ S(z). Consider the set

P={zeX:x¢ S}

In other words, P € p(X) contains all the members of X
whose corresponding subset S(x) € p(X) does not con-
tain . Now we consider the inverse y = S~1(P) € X,
which must exist if S is a bijection. There are two pos-
sibilities:

l.yeP = y¢ Sy =P,
2.y¢ P=S(y) = yeP.

Either way, we get a contradiction, so such a bijection
cannot exist. O

What if we take X to be the set of natural numbers,
N? We have shown that p(N) cannot have the same
cardinality as N, but it is still clearly infinite. We could
repeat this to get another infinite set p(p(N)) that is
larger stilll This gives us a striking result about infini-
ties: there must be hierarchies of infinities that can grow
infinitely large. We usually refer to N is as the “smallest
transfinite cardinal.”

Question 4. Why is Xy the “smallest infinity"? In other
words, why isn’t there a “smaller” infinite size?

Proposition 3.4. p(N) has the same cardinality as R.

in math articles and even in university lectures and text-
books is the following: first we find a bijection between
R and the open interval (0,1), perhaps with something
like

f:(0,1) SR

T +— tan(ﬂx — g)

It is not too difficult to verify the above function is a
valid bijection. So now our task is reduced to finding a
bijection between p(N) and (0, 1).

Let us imagine a list S, So, ... of subsets of N. We ar-
range them in a table as shown in Figure [l In row i,
column j, we write a 1 if j € S;, and a 0 otherwise. This
gives us an infinite binary string for each subset, with
distinct binary strings corresponding to distinct subsets.



s =00000000000...
s =11111111111...
s3 =01010101010...
s4 =10101010101...
s =11010110101...
s¢ =00110110110...
s7=10001000100...
s =00110011001...
s =11001100110...
s;10=11011100101...

s =10111010011...]

Figure 1: Cantor’s Diagonalization

This also gives us another argument for why N and
©(N) cannot have the same cardinality. If a bijection
f: N 5 p(N) did exist, then we could list out every
possible subset as in the figure above, each subset cor-
responding to S; for a distinct natural number i. Let us
construct a new binary string in the following manner:
for each row %, we can switch the value of the ¢th “bit”
to give us a completely new subset S that cannot be any
of the listed S;, as shown in Figure m However, this
contradicts the assumption that the S;'s accounted for
all possible subsets of N.

Thus a bijection cannot exist. This is known as Cantor’s
diagonalization argument. As an exercise, show that
this argument is equivalent to the argument we used to
prove Cantor’s theorem.

Thus, each element S; € p(N) can be expressed as an
infinite string of 1s and 0Os. Placing this infinite string
after a decimal point and viewing it as a binary number,
we can view each subset S; as a number between 0 and
1. For example, {0} would map to %, {1} would map to
1 and {0,1} would map to 3. Thus each subset of N
gives us a distinct binary number between 0 and 1, and
clearly writing any such number out in binary expansion
we can associate it with a bit vector of a subset of N.
Thus we have our desired bijection. O

The above proof is wrong in not just one, but multiple
ways. See if you can figure out why, and perhaps you
won't give an incorrect proof to your students in the fu-
ture. A correct proof might help in spotting the mistakes.

Correct! Proof. We must show that there is a bijection
between p(N) and the real numbers. To do this we use
the Schréder—Bernstein theorem, which states that if
we can find injections f : A <~ B and and g : B — A,
then there exists a bijection h : A = B. This is the
type of theorem that is initially seemingly obvious, but
frustratingly hard to rigorously prove, but obvious again
once you see the proof (which | encourage you to search
up, after trying to derive it yourself, of course).

To find an injection f : p(N) — (0,1), using the nota-
tion of S; C N as in the above incorrect proof, we have
the function

neSs;

Verification of injectivity is left as an exercise.

To do the converse, we use the fact that N is equinumer-
ous to @, which tells us that p(N) is equinumerous to
©(Q). Thus, an injection g : R — p(Q) is equivalent to
an injection to the power set of the naturals. We use the
function:

fr)={qeQ:q<r}.

The reason why this function is injective has to do with
the fact that, given any real numbers r1, 75 € R, we can
find a rational between them. For example, we could
write down their decimal expansion, and look at the first
decimal point where they differ and take a rational be-
tween them.

Thus, by the Schroder—Bernstein theorem, p(N) and R
are equinumerous. O

4 Proof of the Halting Problem'’s
Unsolvability

Let the set of Turing machines (programs) be P. So how
do power sets and cardinalities help us solve the halting
problem? To answer this, we ask another question: what
exactly is a program?

The answer: a block of binary code. A string of 1s and
0s. This means that each program is, at the end of the
day, simply a natural number. This gives us an injec-
tion P < N (in other words, there's at most as many
programs as natural numbers). However, clearly we can
think of an infinite number of distinct programs (e.g. a
program that runs a loop one time, another than runs a
loop two times, etc.), so we have an injection N — P.
Thus, P ~ N. Likewise the input to each program is also
a block of binary code so, at the end of the day, simply
another natural number. Thus, we go back to the table

in Figure [T}

Let the rows represent programs, and the column rep-
resent inputs. Note that this table includes all possible
programs running on all possible inputs. If program i
halts on input j, we put a 0 in box (i,5). If it runs
forever we put a 1 in box (i, ).

Now, we use Cantor's diagonalization argument to con-
struct a new program P € P whose output is different
from every possible output of each row. How does this
program work? Well, it takes the elements across the
diagonal and flips it. In other words, if program S; halts
on input ¢, then P returns 1 and otherwise it returns a 0.
If the halting problem is indeed solvable, and there exists
some magical ‘oracle’ program that can tell whether any
program will run on any input, then we can construct this
program P as follows:



def oracle( program P,
if (P(I).halts()):
return (1)
else:
return (0)

input I):

Listing 1: Our ‘Oracle’ code that can solve the halting
problem

However, note that this program cannot appear anywhere
in our enumeration of programs that we constructed, and
thus it cannot exist! This contradicts the assumption
of the existence of a subroutine capable of determining
whether any given program halts. This proof rests on the
fact that the set of all possible program-input combina-
tions is in some sense ‘bigger’ than the set of all programs
themselves, and so there cannot exist a program whose
output matches the output of every program-input com-
bination.

Another way to think about it is if we change the code
slightly, we can derive a program that leads to a contra-
diction, by making programs take themselves as inputs:

def oracle( program P):
if (P(P).halts ()):
while (True) :
run
else:
return (0)

Letting O represent the oracle program, if we consider
what happens when we run O(QO), we get a paradox. If
the oracle determines this will run forever, it will halt, but
if it detects it will halt, it will run forever. This results in
a contradiction, and thus O cannot exist.

5 Postcursor

In going on this journey to prove the halting problem |
realize | may have raised more questions than answered,
but in a sense this is precisely the spirit of mathematics.
Turing's answer to the halting problem, rather than being
a death knell, told us that there would always be more
mathematics to do. In answering one question we raise
several more; in proving one result we motivate several
more.

That is the ultimate pedagogical philosophy underpin-
ning Cardinality. Mathematics is and always has been a
field of shared knowledge, shared ideas and shared learn-
ing. We hope the writings and learnings of the Stanford
community that this publication goes on to display in-
spires and galvanizes the never-ending, feverish pursuit
of mathematical beauty and truth.

5.1

This article is written deliberately with multiple loose
ends, to keep the reader questioning and wondering. If
any are curious enough to explore further, here are some
good places to do so:

Further Reading

e More Set Theory: If you want to find out more
about infinite cardinals, their weird cousins the or-
dinals, or why exactly Dedekind infinite is, Keith
Kearnes of the University of Colorado has a fantas-
tic repository of course materials at his website.

e More Computing Theory: In my view, there is no
better place to learn the foundations of computing
theory than from the |monumental paper from the
man after which the Turing machines are named.
Reading it should hopefully give you the sense that
you yourself could have come up with these ideas
and results.



https://math.colorado.edu/~kearnes/Teaching/Courses/F23/
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

Instructions
for Fisni%shi%ng Your
Math Homework

Karen Ge

Keep your eyes open. Remember your body
doesn’t belong to anything else

but the chords of breath ringing in your bones.
He tells you the most beautiful

things, scratches them in white,

just as you slip into a wild sleep.

You must write the most difficult lines at 2

in the morning,

when your soul belongs to every corner of the world,
and starry flakes fall like ash

from a forest struck by lightning.

You must keep paying

attention.

Think about love, about the way it dissolves

into a blank page

and finds itself again in your mistakes.

Set your life on fire.

Tell yourself it is holy.

And trace the golden rays of sun

as they weave, like fractal droplets, into a melody

Artwork by Paul Gontard
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Try Trisec{inq Trianqles

Eric Gao

1 Introduction

Many geometric objects can be constructed using only a straightedge and a compass. For instance, it is relatively
straightforward to construct an equilateral triangle given a line segment by doing the following:

1. Open the compass so that the endpoint of the first leg is on one end of the line segment and the endpoint of
the second leg is on the other end of the line segment;

2. Keeping that width, draw one circle centered around one end of the line segment and draw a second circle
centered around the other end of the line segment;

3. Pick one of the intersections between the two circles (there should be two such intersections);

4. Use a straight edge to connect the two endpoints of the original line segment and the intersection identified in
the previous step.

Figure 1: Constructing an equilateral triangle. Original line segment. Step two. Step four.

Each of the two lines drawn in step four connects the center of a circle with radius equal to the original line to
a point on the circle, and thus has length equal to the original line. As such, all three line segments have the same
length and form a triangle, and thus the constructed triangle is equilateral.

While equilateral triangles are interesting on their own, many more shapes are constructable as well. For instance,
regular hexagons can be constructed by constructing six equilateral triangles, angles can be bisected, and even a
regular heptadecagon (19 sides) can be constructed.!

On the other hand, what are the limits of such geometric constructions? It turns out that some seemingly simple
objects elude the power of the straightedge and compass. For instance, triangles and angle bisectors are constructable,

ISee this Wikipedia file for an animated construction.

Artwork by Kae Heller
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series of actions yields the supposedly non-constructable object? Even the ancient Greeks could not come up with a
fully satisfactory answer, but the remainder of this paper will do just that.

2 Constructable Numbers

What does it formally mean for something to be constructable? Before that notion can be formalized, what are
a straightedge and compass, mathematically? Geometrically, constructions are created with physical objects (a
straightedge and compass) on some surface (a sheet of paper) in the real world (not to be confused with the R
world). Working backwards through these notions, start by identifying a two-dimensional surface with R? so every
point p that might be drawn has some associated coordinates (p,,p,) € R?. With this in mind, straightedges and
compasses can be formalized.

Definition 2.1 (Straightedge). A straightedge S is a function that takes in two distinct points (x1,y1), (22, y2) € R?
and returns the line connecting them, namely the set

S((@1,91). (w2, 92)) = {(:c,y) eR:y= 2 oy y}

To — T
if x1 # x9 and
S((z1, 1), (22,92)) = {(z,y) ER*: z = 2}
ifr, = xo.

Geometrically, this amounts to aligning a straightedge so both the two input points are on the straightedge, and then
drawing a line along the edge of the straightedge.

Definition 2.2 (Compass). A compass C is a function that takes in three points (z1,y1), (z2,y2), (23,y3) € R?
with (z2,y2) # (x3,ys) and returns a circle centered around (x1,y1) with radius equal to the distance between
(z2,y2) and (x3,ys3). In particular, it returns the set

C((x1,3), (x2,Y2), (73,3)) = {(ﬂf,y) eR*: (x—21)2+ (y—y1)2 = V(23 — 22) + (y3 — y2)2} :

Geometrically, this amounts to drawing a circle centered at (x1, y1) with radius equal to the distance between (2, y2)
and (x3,y3). This can be executed by opening up a compass until the endpoints of the two legs are on (z2,y2) and
(3,ys3), followed by putting the “pointy leg” on (x1,y1) and tracing out the "drawing leg.”

Geometric constructions start at some point; call this point the origin or (0,0). Straightedges and compasses
require two distinct points as inputs. As such, without loss of generality, let (0,1) be the second point. What
points are constructable? Perhaps a randomly chosen point just happens to be (7, €) which makes those two values
“constructable”’, but that is an unsatisfactory answer. Instead, constructable numbers must be pinned down by
geometric constructions. Take (0,0) and (0,1) to be constructable. Then:

Definition 2.3 (Constructable Point). A point p € R? is constructable if starting from the points {(0,0), (1,0)},
the point p is in the output of a finite number of applications of Straightedge or Compass.

The set of constructable numbers are then the set of possible coordinates of constructable points: x € R is a
constructable number if (z,y) or (y,x) is a constructable point for some y € R. Another natural way to define
constructable numbers is to say that € R is constructable if it is possible to find constructable points p, p, € R?
such that the (Euclidean) distance between p;1,ps is . It turns out that these two notions perfectly coincide.

Proposition 2.4 (Equivalence of Length and Coordinate Definitions). A number x € R is the distance between two
constructable points if and only if there exists y € R such that (x,y) or (y,x) is a constructable point.

Proof. In the forward direction, suppose z is the distance between constructable points (z1,y1) and (x2,y2). Let
L = 5((0,0),(1,0)) be the line connecting (0,0) and (0,1). Geometrically, this is the z-axis. Next, let C' =
C((0,0), (x1,y1), (z2,y2)). Geometrically, this is a circle centered around the origin with radius equal to z =
Vi(wa —21)2+ (Y2 — 1)

One intersection of L and C is (z,0). This point is in L as

L 0-0

0
1-0

(x—=0)+0

while it is also in C as




As such, (x,0) is constructable.

Conversely, suppose (x,y) is constructable (the other case where (y, ) is constructable follows similarly). Then, do
the following construction:

1. Construct the point (2z,0) by taking S((0,0),(1,0)) N C((z,y), (x,y), (0,0)) (there will be two points in the
intersection with the other being (0,0));

2. Construct the point (z, —y) by taking C((0,0), (x,y), (0,0))NC((2z,0), (x,y), (0,0)) (there will be two points
in the intersection with the other being (z,y));

3. Construct the point (z,0) by taking S((x,y), (z, —y)) N .S((0,0), (0,1)).
Then, the distance between (0,0) and (z,0) is z, as desired. O

Figure 3: Proof of Proposition Starting points. Step one. Step two. Step three.

Geometrically, the forward direction demonstrates how compasses can be used to translate distances while the converse
direction demonstrates how it is possible to project one coordinate onto its respective “axis”. As a result:

Corollary 2.4.1. A number x € R is constructable if and only if the point (0, z) is constructable.
It turns out that it is possible to give a complete algebraic characterization of constructable numbers.

Proposition 2.5 (Characterization of Constructable Points). A number x € R is constructable if and only if there
exists a sequence {k;,C;}7— such that:

1. C=Q;

2. Foralli>0, k; € C;;

3. Foralli>0,Cii1=C;i[Vki|, where C;[/k;| = {a +bVkia,be Cl}
4. x€C,.

By construction, each C; is a fielf over addition and multiplication (since Q is a field and completing the square
allows for the field to be closed over multiplicative inverses). The forward direction proceeds in three parts: showing
that all integers are constructable, all quotients of constructable numbers are constructable (and hence all rationals
are constructable), and that if a number is constructable, its square root is constructable.

Lemma 2.6 (Integers are Constructable). If n € Z is an integer, then n is constructable.

Proof. First, we show that all positive integers are constructable. In particular, we show that all points of the form
(n,0) are constructable for natural numbers n by induction. Clearly, (1,0) is constructable. Next, suppose (n — 1,0)
is constructable. Then,

S5((0,0),(n—1,0))NnC((n—1,0),(0,0),(1,0)) = {(n —2,0),(n,0)}

2A field is a set equipped with two operations, addition and multiplication, such that “math” works: Addition is associative with mul-
tiplication, addition and multiplication are commutative, additive and multiplicative identities and inverses exist, and addition distributes
over multiplication.



as it is the intersection of the z-axis and a circle of radius one centered around (n—1,0). Thus, (n,0) is constructable
and all natural numbers are constructable. By a similar argument, we can show that all negative integers are
constructable, and we are done. O

A similar construction also gives that sums and differences of constructable numbers are constructable.

Lemma 2.7 (Quotients are Constructable). If a and b are constructable with a # 0, then so is gE
Proof. Suppose a and b are constructable numbers. Then, (a,0) and (b,0) are constructable points. By a similar
construction as that in the proof of Proposition 1, perpendiculars are constructable, so the y-axis is a constructable
line and (0,1) is a constructable point. By constructing perpendiculars twice, it is possible to construct parallel
lines through a point. Then, construct a line through (b,0) parallel to the line connecting (0,1) and (a,0). The
intersection of that line and S((0,0), (0,1)) will be the point (0,2) by similar triangles. O

Figure 4: Proof of Lemma Starting points. Step one. Step two. Desired point.

A similar construction creates the triangle (0,0), (z,0), (0,b) similar to the triangle (0,0), (a,0),(0,1). By similar
triangles, x = ab and hence products of constructable numbers are constructable as well.

Lemma 2.8 (Square Roots). Suppose a is constructable. Then, \/a is constructable.

Proof. By Lemmas 1 and 2, 231 = 2 4+ 1 and 251 = ¢ — 1 are constructable, so the points (0,% — 1), (0, % + 1)

are constructable. Then, by power of a point with respect to (0,0), the z-coordinates of the points in
5((0,0),(1,0) N C((0,4 - 3),(0,0), (0, % + 3))
are ++/a.

Figure 5: Proof of Lemma Starting points. Step one. Step two. Desired points.

This is because the diameter of the circle is

2\/<00>2+(0(;+;))22(3+%)a+1

and a point on the circle is (0, —1) as

3The assumption of a # 0 may be relaxed if your straightedge and compass are large enough.

10



so the point (0,0) splits a diameter along the y-axis into segments of lengths a and 1 while splitting the portion of
the z-axis into two equal segments of length A. It must be that A2 = a - 1, so the intersections must be at (—+/a, 0)

and (1/a,0). O

Taken together, Lemmas [2.6] [2.7| and [2.8| give that if a real number can be made using some sequence of adjoining
square roots, then it is constructable. The converse of Proposition similarly proceeds in three steps, analyzing
that in each of the three valid geometric constructions, nothing other than square roots can be created.

Lemma 2.9 (Intersection of Two Circles). Suppose a,b,c,d, e, f are points in R? with coordinates in some field C;.
Let C; = C(a,b,c) and Cy = C(d, e, f) with Cy # Cs. If (z,y) € C1 N Cy, then x € C;[k;] for some k; € C; (and
an analogous result holds for y ).

Proof. Suppose (z,y) € C1 N Csy. Let a = (as,ay) and so forth with b, ¢, d, e, f. Then, (x,y) satisfies

V= a2+ = a)2 = Jlew —b)2 + (e = b)2 and /(2 = da)2 4+ (y — dy)2 = \/ (e — €2)? + (fy — )2

Let

= fle = )2+ (e —b)? and 1o = \[(fa— )2+ (fy — e,)?
be constructable numbers. Squaring all expressions above gives that
(x—az)2+(y—ay)2 = 22 foam+ai+y2—2yay+a§ =r]

and

Subtracting the two equations from each other gives that
2(dy — az)x + af — dg +2(dy — a,)y +ay — dy =17 — 3.

If ay =d, or ay = dy, then z,y already have closed-form solutions. Going forward, suppose a, # d, and a, # d,.

As fields are closed under addition and multiplication, all terms (other than x,y) are in C; so the above is a linear
equation in x,y. Thus, solving for y in terms of z yields

y=az+V
for some a’,b" € C;. Substituting this back gives that x is characterized by
2% — 2xd, + d2 + (d'z + ') — 2(d’'x + V)d, +d2*7‘2

Once again using the fact that C; is closed under addition and multiplication, algebraic manipulation gives that the
above is equivalent to
// 2 + b”x + C =0

for some a”,b",¢” € C;. The Quadratic Formula then gives that

—b" + (b//)z — dq " b 1
T 20/” — 2a// 2a// (b//)2 _ 4(1,//0//'
As C; is closed under inverses, zba,:,, 527 € C;. As C; is closed under multiplication and addition, (b”)* —4a”¢” € C;
as well. Thus, taking k; = (b")% — 4a”c" gives that
b’ 1
Tr = ~ 57 + 57 (b//)z —4a''d" e {m +n (b”)2 —4a'c¢" :m,n € CZ} C CZ[\/]Z]
as desired. O

The proofs of the remaining two cases are largely similar, so some details are omitted.

Lemma 2.10 (Intersection of a Line and a Circle). Suppose a,b, c,d, e are points with coordinates in some field C;.
Let L = S(a,b) and C = C(c,d,e). If (z,y) € LNC, then x € C;[\/k;] for some k; € C;.
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Proof. Let (z,y) € LNC. If ay = b, then L is vertical, so x = a, € C;. Otherwise, (z,y) satisfies

—ay
=—>(r—ag)+a
Y bq;_a'a;( z) y

and

V@ =+ (=) = \/ler — da)? + (e, — d,)2.
Letting 7 = \/(ex — dz)? + (ey — dy)? so 12 € C;,

y=dz+V

for some a’,b" € C; and
(x—c)*+ (y—c,)* =12

Substituting gives that x is characterized by
(x—c)?* + ((d'z+ V) —¢,)* =12

which can be re-written as
" _2 // /!
a'z*+b'r+" =0

for some a”’,b",c” € C;. Then, the quadratic formula gives that = € C;[/k;] for some k; € C;. O

Lemma 2.11 (Intersection of Two Lines). Suppose a,b,c,d are points with coordinates in some field C;. Let
Ly = S(a,b) and Ly = S(c,d) If (z,y) € Ly N Lo, then x € C;[\/k;] for some k; € C;.

Proof. Let (x,y) € L1 N Ly. Then,

b, —a
y:H(ﬁC—ar)‘f’ay
and J
y:ﬁ(x—cw)—i—cy.

Thus, x is characterized by
by — ay

d — Uy
(x —az) +ay, =2 CJ(x—cw)—Fcy

bx_az dz_cx

which is a linear equation with coefficients in C;. Thus, © € C; so taking k; to be anything in C; gives that

z € Ci[VE). O

3 Non-Constructable Numbers

The characterization of constructable numbers in the language of Proposition [2.5/forms the foundation for the proofs
of why certain geometric objects are not constructable.

3.1 Trisecting an Angle

Is it possible to trisect every angle? To produce a negative result, it suffices to show that some angle is not trisect-
able: in particular, a 60 degree angle cannot be trisected. If a 60 degree angle could be trisected, then 20 degree
angles could be constructed; a 20° — 70° — 90° triangle with hypotenuse of length one would have legs of length
cos(20°) and sin(20°), making them constructable numbers. The following proposition shows that this can not be
the case.

Proposition 3.1. The number cos(20°) is not constructable.
Proof. Observe that by the triple angle formula,

% = c0s(60°) = cos(3 - 20°) = 4 cos*(20°) — 3 cos(20°)
so cos(20°) is a root of the polynomial

f(x):4x3—3x—%

12



or equivalently, cos(20°) is a root of the polynomial
g(x) = 823 — 62 — 1.

As such, it is sufficient to show that no root of g is constructable.

The proof proceeds inductively. First, we will show no root of g is in Q. Then, we will show if there are no roots of
g in C; for some field C;, then there are no roots of g in C;[/k;] for any k; € C;.

Towards a contradiction, suppose g(x) has some rational root . By the rational roots theorem,

1 1 1
+1,£-,+—,+-
TE{ 7 27 4’ 8}

. However, none of these work: to reduce the number of cases, note that
8 —6r—1=0 <= 83 —6r=1 <= r(8?—6)=1 < |r|(8? —-6) =1

so the sign of r does not matter. Then:

o If r=41,|r|(87% —6) =2 #1;

o If r =41, |7|(87% —6) = =2 # 1;
o Ifr=x1 |r|(8r% —6) = -1 #1;
o Ifr=x1 |r|(8r% —6) = —35F #1.

As such, g(z) has no rational roots and cos(20°) cannot be in Q.

Next, suppose g has no roots some field C;. Towards a contradiction, suppose g has a root r € C;[vk;] for some

k; € C;. Then,
r=a+byk;

for some a,b € C;. As r is a root of g(x), it holds that g(a + by/k;) = 0. Expanding gives that
(8a® + 24ab®k; — 4a + 1) + (24a®b + 8b°k; — 4b)\/k; = 0.

[t must be the case that 24a2b + 8b3k; — 4b = 0. If not, either /k; = 0 or

\/E - _8@3 + 24@[)2]{51 — 4(1 + 1
e 24a2b + 8b3k; — 4b

In either case, this would mean that /k; € C;, so cos(20°) = a + by/k; € C;, a contradiction.
Thus,
8a® + 24ab’k; — 4a + 1 = 24a®b + 8b3k; —4b =0

Then, replacing b with —b gives
(8° + 24ab%k; — 4a + 1) + (—24a%b — 8b%k; + 4b)\/k; = 0 — 0y/k; = 0

so a — by/k; is a root of g as well. Note the quadratic term vanishes, so the sum of roots of g is

—==0
8

so by Vieta's formula and the fundamental theorem of algebra, the final root of ¢ is

0— (a+bvVki) — (a —b\/k;) = —2a.

However, fields are closed under multiplication so —2a € C; and ¢ has a root in C;, which is a contradiction. This
completes the proof. O

3.2 Doubling the Cube

Given a line segment £, is it possible to construct a new line segment ¢’ such that a cube with edges ¢ has twice
the volume of a cube with edges £7 In general, it will not be possible: consider ¢ having length one, so a cube with
edges ¢ has volume one. This problem then becomes whether or not it is possible to construct a line segment with
length /2. Unfortunately (or perhaps fortunately?), the answer to this question is no.
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Proposition 3.2. The number /2 is not constructable.

Proof. The proof will proceed similar to the proof of Proposition [3.1] Observe that
(V3 =2
so v/2 is a root of
fz) =2 —2.

Similar to before, if r is a root of x, then r is not rational and if there are no roots of f in the field C;, then there
are no roots of f in the field C;[\/k;] for any k; € C;.

First, there are no rational roots of f. By the rational roots theorem, if r is a rational root of f then
re {+1,+2}.

Checking these possibilities for whether or not 3 = 2 yields

so f has no rational roots.

Next, suppose f has no roots in the field C;. Towards a contradiction, suppose f has a root r in C;[v/k;] for some
k; € C;. Then, r = a + b\/k; for a,b € C;. As f(r) =0,

(a® + 3ab? — 2) + (3a®b + b3k;)\/ki = 0.

Then, 3a%b + b3c = 0 as, if not, either k; = 0 or Vk; = —% is in C;, contradicting 7 ¢ C;. As such,

a — by/k; is another root of f. By sum of roots, the final root of f is

0—(a+bvki) — (a—b\Vki) = —2a

and we note 2a € C;, contradicting the original assumption that f has no roots in C;. O

4 Conclusion

It was once famously said{*

Since the dawn of time, human beings have asked some fundamental questions: who are we? why are we
here? is there life after death? Unable to answer any of these, in this paper we will consider cohomology
classes on a compact projective manifold that have a property analogous to the Hard-Lefschetz Theorem
and Hodge-Riemann bilinear relations.

Unable to parse the last sentence, this paper grasps lower-hanging fruit and instead develops connections between
algebraic structures and geometric constructions to ultimately answer why it is impossible to trisect every angle or
double every cube, a question dating back to ancient Greece. Constructable numbers in the plane generally correspond
to roots of polynomials and can be characterized by taking the rationals and sequentially adjoining square roots of
numbers that are known to be constructable.

4“On Hodge-Riemann Cohomology Classes’ by Julius Ross and Matei Toma, 2021.
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The Pigeonhole Principle (which we take for granted)
states: If n items are put into m containers with n > m,
then at least one of the containers must have more than
one item in it. Let's see some straightforward examples
to get some flavor of its use.

Preliminary Examples

Theorem 1.1. There must be two people in New York
City with the same number of hairs on their head.

To illustrate, suppose (and this is an overestimate) the
maximum number of hairs on a head is 300,000. Since
there are more than 300,000 people in New York City
who all have some natural number of hairs on their head,
by the Pigeonhole Principle, at least two people will have
the same number of hairs. Let's now move to a combi-
natorial example.

Theorem 1.2. In every group of six people there will
be at least three mutual acquaintances or three mutual
strangers.

This is one of the motivating examples in Ramsey Theory,
a field in combinatorics where the general philosophy is
that every very large structure (often graphs) contains a
large well-organized substructure (properties or substruc-
tures). In particular, Ramsey Theory is concerned with
finding order in chaos. To prove the theorem, we turn to
graph theory. Consider the complete graph Kg with six
vertices (representing the six people), where all the edges
are colored either red or blue, based on whether the peo-
ple are acquaintances or strangers. We want to prove
that there must exist a red triangle or a blue triangle.

Proof. Choose some vertex v in Kg. Since we're in Kg,
there are 5 edges incident to v, and so by Pigeonhole, 3 of
them must be the same color. Without loss of generality,
let this color be red. Suppose these 3 edges connect the
vertex v to the vertices a,b,c. Now, if any of the edges
(ab), (bc), (ac) are blue, then we have a blue triangle. If
not, then all 3 of those edges must be red, and they thus
form a red triangle. O
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Let's end the preliminaries with a more applied example
from computer science.

Theorem 1.3. There is no lossless data compression al-
gorithm that shortens every file.

This theorem essentially says that it's impossible to cre-
ate a magic compression algorithm that makes every sin-
gle file smaller without losing any information. Imagine
you're trying to pack all your clothes into a suitcase.
There's a limit to how much you can compress every-
thing before you either have to leave something out (lose
data) or acknowledge that not everything can be made
smaller. In the world of data, this means there are always
going to be some files that, when compressed, either stay
the same size or might even need to become larger to en-
sure they can be fully recovered (decompressed) without
losing any bits of information.

Proof. Suppose that there does exists some lossless data
compression algorithm A that can shorten every file. We
consider all possible files of a certain length n bits. Then
there are 2™ such files. If A shortens every file, then every
file of length n must be mapped to some file of length
less than n. But there are fewer files of length less than
n than there are of length n. To see this, note that the
total number of files of length less than n is

n—1
do2i=2"—1,
=0

which is less than 2", the total number of files of length
n. So, by the Pigeonhole Principle, at least two files of
length n need to be compressed to the same shorter file.
This contradicts the lossless condition for A, since loss-
lessness requires a unique decoding of each compressed
file back to its original form. So we are done. |

In fact, it follows that any such compression algorithm
necessarily increases the size of some files.

Artwork by Paul Gontard



2 Minkowski’'s Theorem

Minkowski's theorem is a pretty intuitive, but incredibly
versatile theorem that lends itself in many areas of alge-
bra and number theory. It's a powerful tool for develop-
ing much of the geometry of numbers, and sees itself in
proofs of the finiteness of the class number and Dirich-
let's unit theorem in particular.

Theorem 2.1. Every symmetric (w.r.t the origin) convex
set in R™ with volume > 2™ contains a nonzero lattice
point (that is, a point in Z™ \ {0}).

Let's prove the case for n = 2.

Proof forn = 2. Let S be convex and origin-symmetric
with Area(S) > 4. We now consider taking each point
in S (mod 2). That is, we consider the map

(z,y) — (z mod 2,y mod 2).

Here, by mod 2, we mean the system where for a,b € R,
a =bif and only if a — b € 2Z. Thus, this is a function
of the form f : S — R2?/2Z2. Intuitively, we have cut
the plane into 2 by 2 squares, and we're stacking each
of these squares on top of each other. It is clear that
f(S) has area < 4, since its codomain is a 2 by 2 square.
Hence, after stacking, there must be some overlapping
regions, since Area(S) > 4. We can view this as some
geometric form of the Pigeonhole Principle! In partic-
ular, if we have some volume-nondecreasing function f
compacting a set A into a set B with smaller volume,
then f cannot be injective.

So there must be distinct points z = (x1,z2) and
y = (y1,y2) such that f(z) = f(y). By our definition of
f, it follows that

(21 mod 2,5 mod 2) = (y; mod 2,y2 mod 2),

hence the points differ by some integer translation with
factor 2: x4+ (2i,25) = y for some i, j € Z with at least
one being nonzero. Since S is origin-symmetric and con-
vex, —z € S and the line segment connecting y and —x
is fully contained in S. Let z be the midpoint of this line.
Then

—r+y —z + (z + (2i,29))
2 2

is a lattice point. So S contains some nonzero lattice
point, which finishes the proof. O

The general theorem applies to any lattice A:

Theorem 2.2. Let A be a lattice and S a bounded origin-
symmetric convex subset in R™. [f vol(S) > 2™ det(A),
then S contains at least one point in A\ {0}.

Proving this reduces to the case of Theorem [2.1] after
applying some affine mapping. This helps us prove some
classical results in elementary number theory, like the
two-square and four-square theorems.
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3 Dirichlet Approximation Theo-
rem

The Pigeonhole Principle often appears when needed to

obtain bounds with a finite number of objects. Consider

for example, the following problem, which appeared on
the 2006 Putnam Exam:

Show for every X = {z1,...,z,} C R", there exists
nonempty S C X and m € Z such that

’m+25

ses

1
n+1"

<

Proof. The idea is to take s; = z1 + --- + z; for
i € {0,...,n} and consider the fractional part {s;} =
s; — |8;] of each s;. In particular, sort the {s;} in as-
cending order and denote this new list as tg, ..., t,. Now,
since tg = 0, we have that the sum

(tr —to)+ -+ (tn —tn—1) + (1 — t,)

adds up to 1. So by the Pigeonhole Principle, one of
the differences is < ﬁ It is then a matter of case-
work (conditioning on whether the difference is 1 — t;,)

to obtain the set S. O

One of the powers of the Pigeonhole Principle is exactly
this idea: to discretize a space so that we can find the
existence of some suitable object. Now we state Dirichlet
Approximation. The proof follows a similar flavor to that
of the above problem.

Theorem 3.1 (Dirichlet Approximation). For every num-
ber . € R and every n € ZT, there is some q €
{1,...,n} and p € Z such that

1
lga —p| < =
n

Proof. Consider the set of numbers {sa} € [0,1) for
each s € {0,1,...,n}, where again {sa} = sa — |sa]
is the fractional part. Now note that

,1) .

0,1) = [0,;>U [ii)uu[

Note that there are n disjoint intervals here. So there
must be two such {sa} in the same interval. In partic-
ular, applying Pigeonhole here, there must be sq,s9 €
{0,1,...,n} with s; < s where

1

n —

{520}~ {ma}| < .

Now let ¢ = so — s1 and p = [sqa] — [s1a]. Then
lga — p| < 717 That ¢ € {1,...,n} is clear as s1 < s9
and s1,s2 € {0,1,...,n}. This finishes the proof of
Dirichlet's approximation theorem! O

What does this tell us? Well, it says that we can approx-
imate any real number with a sequence of good rational
approximations! A direct consequence of this is that the
inequality

0<

q2

ozp‘<
q



is satisfied by infinitely many p,q € Z. Indeed, we can
view this result as some stronger form of the rationals
being dense in R. An interesting note: this approxima-
tion theorem can be proven using Minkowski's theorem
as well. We leave the details to the reader. (Hint: con-
struct a bounded set in the plane that describes |ax —y].
This set should contain a nonzero lattice point!)

4 Solvability of Pell’'s Equation

Pell's equation is a certain Diophantine equation of the
form 22 — Dy? = 1 for nonsquare D € Z*. It is a
foundational equation in Algebraic Number Theory. In
particular, notice that

2? — Dy?* = (x + yVD) (z — yVD)

is the norm of = —|—y\/5 in the ring Z[\/E] Thus, solu-
tions to Pell's equation give the norm 1 units in Z[v/D].
One proof that there exists some nontrivial solution (so-
lutions other than (+1,0)) is the following elementary
proof, applying the Pigeonhole Principle three times.

Theorem 4.1. If D € Z* is nonsquare, then Pell’s equa-
tion 22 — Dy? = 1 has at least one nontrivial solution.

The proof follows Dirichlet's argument, which is a sim-
plification of a proof by Lagrange.

Proof. Fix By > 1. Employ Dirichlet Approximation to
get ai, by € ZT with |a17b1\/5‘ < B% < ﬁ. Now take
By > by with B% < |a1 — bl\/5|, and obtain another
pair (az, by) with |a2 — bg\/ﬁ’ < B%) < i
this, we get an infinite sequence Z—j of increasingly tight
approximations to v/D.

Repeating

Now, we aim to show that there are infinitely many
a — bV/'D € Z[/D] with absolute norm at most 3v/D.
This will form the basis of our next Pigeonhole. Let
a,b € Z such that |a — b\/ﬁ‘ < . Then

la+bVD| < |a—bV/D| + [2bv/D| < [3bv/D|

and
@2 D?| = |+ 0D |a~ VD < 3 -|3WD| = 3VD

so there are infinitely many a — bv/ D with absolute norm
at most 3v/D.

Now, by the Pigeonhole Principle, there must be some
n € Z with n < 3vD such that a2 — Db? = n
is true for infinitely many positive integer pairs (a,b).
Now, consider reducing each pair modulo |n| to get
pairs (a mod |n|,b mod |n|). Applying Pigeonhole again,
these pairs must repeat, so in particular, there are dis-
tinct positive integer solutions (a1,b1), (ag,b2) satisfy-
ing a? — Db? = a2 — Db2 = n, and a; = as mod |n|,
b1 = be mod |n|.
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Write a1 = ag + nk; and by = by + nks. Then we have
ai +bvVD
= ay + nki + boV'D + nkoV' D
=as +boVD +n(ki + k2VD)
=az + bz\/ﬁ-l- (a% — b§D) (kl + kz\/ﬁ)
(az +b2V/D) (1 + (az — boV'D) (k1 + k2V'D)).
Similarly, we have
a1-b1VD = (az—b2V/D) (1+ (a2 +b2vD) (k1 —k2v/D)).
Now, we can combine like terms to write these as
a1+ b1VD = (az + b2V D) (a + bvVD)
a — blx/ﬁ = (ag — bg\/ﬁ) (a — b\/ﬁ)
Now multiply these to get
n= (1’1 + ylx/B) (:cl - ylx/ﬁ) = n(a2 - db2)

So we recover some a,b € Z with a? — db®> = 1 as de-
sired. It remains to show that this (a,b) is nontrivial,
which is a routine check. In particular, if (a,b) = (1,0),
we would find that this contradicts (a1,b1) # (az,b2),
and if (a,b) = (—1,0), this contradicts that aq,as > 0.
So we are done. O

The same proof (modified slightly) gives infinite solutions
to the Pell’'s equation. Such a fact reveals that there are
infinitely many units in real quadratic rings Z[v/D] for
nonsquare D € Z+.

5 A Theorem of van der Waer-
den

We come back to Ramsey Theory. Recall the motivating
philosophy: every very large structure contains a large
well-organized substructure. Terrence Tao in his book
Additive Combinatorics |TV06] said that you could view
Ramsey Theory as “the set of generalizations and re-
peated applications of the pigeonhole principle.” Indeed,
the picture is clear: when our objects get too large, even-
tually, things repeat (and end up in the same pigeonhole).

Van der Waerden's theorem [Van27] echoes this philoso-
phy.

Theorem 5.1. Given r,k € Z, there is some N € 7T
such that if the integers {1,2,...,N} are colored with
one of r different colors, then there are at least k integers
in arithmetic progression (AP) whose elements are of the
same color.

This is quite profound: arbitrarily long AP substructure
exists within the integers! The least N here is the van
der Waerden number W (r, k). Determining these values
for most r and k is still open. We prove the special case
for W (2,3):

Theorem 5.2. There is some number N € Z%t such
that if the integers {1,2,..., N} are colored red or blue,
then there must be at least one monochromatic 3-AP. In
particular, W (2,3) < 325.



Proof. Let ¢(n) be a coloring of A = {1,...,325}. We
find three elements in AP. Divide A into 65 blocks of the
form {bb+1,...,5b+ 5} for b € {0,64}. Now there are
32 possible colorings for each block, so by the Pigeon-
hole principle, every 33 consecutive blocks must have two

blocks colored exactly the same. In particular, there are
bl, by € {0, ey 32} with

C(5b1 + j) = C(5b2 + j)

forall j € {1,...,5}. Now, among 5b; +1, 5b1 +2, 5b1 +
3, there are at least two that are of the same color. Call
these 5b; + a; and 5b; + as with a1 < as and without
loss of generality, let them be colored red.

Now take az = 2as — ay. If 5b1 + as is red, then we are
done.

Now, suppose 5b; +ag is blue. Then 5bs +ag is also blue.
Take b3 = 2by —by. We know b3 < 64 so 5bs +az < 325.
If 5b3 + as is red, then 5[)1 + aq, 5b2 + as, 5b3 + as is a
red arithmetic progression. Otherwise, 5b; + as, bbs +
as, 5bs + as is a blue arithmetic progression. This fin-
ishes the proof. O

Over the years, mathematicians have extended and gen-
eralized van der Warden's theorem in many ways. Sze-
merédi's theorem generalizes this to subsets of inte-
gers with positive density, and of course, the celebrated
Green—Tao theorem which extends Szemerédi's theorem,
stating that the sequence of primes contains arbitrarily
long arithmetic progressions.

6 Erdds—Szekeres Theorem

The Erd3s—Szekeres theorem [ES35] is a result in Ramsey
Theory, that offers an incredibly slick application of the
Pigeonhole Principle.

Theorem 6.1. Any sequence of distinct real numbers
with length > (r — 1)(s — 1) contains a monotonically
increasing subsequence of length r or a monotonically
decreasing subsequence of length s.

Proof. Suppose we have some real sequence with length
(r—1)(s—1)+1. Now, label each n; in the sequence with
(a;,b;), where a; and b; are the lengths of the longest
monotonically increasing/decreasing subsequences end-
ing with n;. Now, notice that the labels for each of these
numbers must be different. In particular, for any i < j,
when n; < nj, then a; < a;, and when n; > n;, then
b < b;. Now, if a; <r —1and b; < s —1, then there
are (r — 1)(s — 1) possible labels. Thus, by the Pigeon-
hole Principle, there must be some i for which a; > r or
b; > s. If the former, then n; is part of a monotonically
increasing sequence of length > r, and if the latter, then
n; is part of a increasing sequence of length > s. This
finishes. ]

Erd6s—Szekeres generalizes to constant sequences too.
Consider, for example, the following statement.
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Theorem 6.2. Any sequence of (n — 1) + 1 real num-
bers contains a constant, increasing, or decreasing sub-
sequence of length n.

Proof. Suppose we have some sequence of real numbers
of length (n — 1)3 + 1. Now, label each n; in the se-
quence with (a;, b;, ¢;), where a;, b;, ¢; are the lengths of
the longest monotonically increasing/decreasing, or con-
stant subsequences ending with n;, respectively. Now
notice that the labels for each of these numbers must be
different. In particular, for any i < j, when n; < nj,
then a; < aj, when n; > nj, then b; < b;, and when
n; = nj, then ¢; < ¢;. Now, if a; <n—1,b; <n—1,
and ¢; < n — 1, then there are (n — 1)® possible la-
bels for the numbers until n;. Thus, by the Pigeon-
hole Principle, there must be some i < j for which
(@i, bi,ci) = (aj,bj,¢j), but we've already seen why this
is not possible. Thus, there is some i for which a; > n,
b; > n, or ¢; > n. This finishes, since if a; > n, then
n; is part of an increasing subsequence of length n, if
b; > n, then n; is part of a decreasing subsequence of
length n, and if ¢; > n, then n; is part of a constant
subsequence of length n. O

7 The Happy Ending Problem

We end with a discussion that is not so directly related
to Pigeonhole as it is related to Erd6s—Szekeres.

Theorem 7.1. Among any five points in the plane, four
are in convex position.

To see this visually, consider the plot in Figure[] No mat-
ter how we place our five points, we can always connect
four into a convex quadrilateral. The proof is straight-

forward.

the three cases for 5 points

counterexample for 8 points

Figure 6: Examples of the Happy Ending Problem [Pet13]

Proof. We'll show that either the five points form a con-
vex pentagon, or some subset of four points among them
forms a convex quadrilateral. If four or five of the points
are vertices of the convex hull of these points, then we
are trivially done. Otherwise, the convex hull will be in
the form of a triangle with two points inside of it (other-
wise, the convex hull would contain four or five points).
In this case, we can choose the two inner points and one
of the triangle sides to be in convex position. O

For a visual explanation of this proof, see [Pet13].

The problem extends: of interest is the least n points
in the plane such that at least & are in convex position.
Some known constants now are that nine points give five



in convex position and seventeen points give six in con-  and he coined this the Happy Ending Problem, since the
vex position. This problem is known as the Happy Ending  research eventually led to the marriage of George Szek-
Problem. Erd8s worked on this problem with Szekeres, eres and Esther Klein, a happy ending.
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