1. The sum of all of the interior angles of seven polygons is $180 \cdot 17$. Find the total number of sides of the polygons.

Answer: 31

The angle sum of a polygon with n sides is $180(n-2)$. The total sum is then $180\left(n_{1}-2\right)+180\left(n_{2}-\right.$ $2)+\cdots+180\left(n_{7}-2\right)=180\left(n_{1}+n_{2}+\cdots n_{7}\right)-7 \cdot 2 \cdot 180=180 \cdot 17$. Dividing through by 180 gives $n_{1}+n_{2}+\cdots+n_{7}-14=17$, so the total number of sides $14+17=31$.
2. The pattern in the figure below continues inward infinitely. The base of the biggest triangle is 1. All triangles are equilateral. Find the shaded area.

Answer: $\frac{\sqrt{3}}{5}$
Rank the shaded triangles by their area, largest to smallest. The largest shaded triangle has an area of $\frac{\sqrt{3}}{16}$. There are three of them, call them the first set. The $i^{t h}$ set of triangles has base $\frac{1}{4}$ that of the $(i-1)^{t h}$ set, so the area of the $i^{t h}$ set is $\frac{1}{16}$ that of the of the $(i-1)^{t h}$ set. So the total shaded area becomes an infinite geometric series:

$$
\frac{\sqrt{3}}{16} \cdot 3 \cdot\left(\frac{1}{1-\frac{1}{16}}\right)=\frac{\sqrt{3}}{5} .
$$

3. Given a regular pentagon, find the ratio of its diagonal, d, to its side, a.

Answer: $2 \cos (36)$

Consider the triangle formed by the diagonal and two sides of the pentagon. The interior angle of the pentagon is 108°, so the other two angles are both 36°. By the law of sines, $\frac{\sin (36)}{a}=\frac{\sin (108)}{d}$. Thus, $\frac{d}{a}=\frac{\sin (108)}{\sin (36)}=\frac{\sin (72)}{\sin (36)}=\frac{\sin ((2)(36))}{\sin (36)}=2 \cos (36)$.
4. $A B C D$ form a rhobus. E is the intersection of $A C$ and $B D$. F lie on $A D$ such that $E F \perp F D$. Given $E F=2$ and $F D=1$. Find the area of the rhobus $A B C D$.
Answer: 20

By the Pythogorean theorem, $E D=\sqrt{5}$. Since $A B C D$ is a rhombus, $A E \perp E D$. So triangle $\triangle F D E \sim \triangle E D A$. Thus we obtain the following ratio:

$$
\begin{aligned}
\frac{D F}{E D} & =\frac{E F}{A E} \\
\frac{1}{\sqrt{5}} & =\frac{2}{A E} .
\end{aligned}
$$

So $A E=2 \sqrt{5}$. Thus, the area is $\frac{1}{2}(2 \times A E)(2 \times D E)=\frac{1}{2}(4 \sqrt{5})(2 \sqrt{5})=20$.
5. In the 2009 Rice Olympics, Willy and Sammy are two bikers. The circular race track has two lanes, the inner lane with radius 11, and the outer with radius 12 . Willy will start on the inner lane, and Sammy on the outer. They will race for one complete lap, measured by the inner track. What is the square of the distance between Willy and Sammy's starting positions so that they will both race the same distance? Assume that they are of point size and ride perfectly along their respective lanes.

Answer: 265-132 $\sqrt{3}$

Denote r_{1} the inner radius and r_{2} the outer radius. Then the inner lane has distance $2 \pi r_{1}$ and outer lane $2 \pi r_{2}$. But since Sammy will only be racing for $2 \pi r_{1}$, there is $2 \pi\left(r_{2}-r_{1}\right)$ distance along the outer lane which he will skip. Let W denote Willy's starting position, S Sammy's starting position, and O the origin of the circular race track. Let θ be the angle between $W O$ and $S O$. Then $2 \pi\left(r_{2}-r_{1}\right)=\frac{\theta}{360}\left(2 \pi r_{2}\right)$. Plugging in $r_{1}=11$ and $r_{2}=12$ and solving for θ, we get $\theta=30^{\circ}$. Using coordinate geometry, $W=(11,0)$ and $S=(12 \cos 30,12 \sin 30)=(6 \sqrt{3}, 6)$. Thus, $(W S)^{2}=(11-6 \sqrt{3})^{2}+36=265-132 \sqrt{3}$.
6. Equilateral triangle $A B C$ has side length of 24 . Points D, E, F lie on sides $B C, C A, A B$ such that $A D \perp B C, D E \perp A C$, and $E F \perp A B . G$ is the intersection of $A D$ and $E F$. Find the area of the quadrilateral $B F G D$.
Answer: $\frac{117 \sqrt{3}}{2}$

$A D$ bisects $B C$ since $\triangle A B C$ is equilateral, so $C D=12 . \triangle A C D$ is a 30-60-90 degree triangle, so $A D=12 \sqrt{3}$. Likewise, $\triangle D C E$ is also $30-60-90$, so $E C=6$ and $E D=6 \sqrt{3}$. So $A E=A C-E C=$ $24-6=18$. $\triangle E A F$ is also $30-60-90$, so $A F=9$ and $E F=9 \sqrt{3}$. Since $\angle A E G=\angle A E F=$ $30^{\circ}, \angle G E D=60^{\circ}$. Likewise, $\angle C D E=30^{\circ}$ implies $E D G=60^{\circ}$. So $\angle D G E$ must also be 60° and $\triangle G E D$ is equilateral, so $E G=G D=E D=6 \sqrt{3}$. $F G=E F-E G=9 \sqrt{3}-6 \sqrt{3}=3 \sqrt{3}$. $F B=A B-A F=24-9=15$ and $B D=B C-C D=12$. So area of quadrilateral $B F G D$ is area $\triangle B F G+$ area $\triangle B D G=\frac{1}{2}(3 \sqrt{3})(15)+\frac{1}{2}(6 \sqrt{3})(12)=\frac{117 \sqrt{3}}{2}$.
7. Four disks with disjoint interiors are mutually tangent. Three of them are equal in size and the fourth one is smaller. Find the ratio of the radius of the smaller disk to one of the larger disks.
Answer: $\sqrt{3}-\frac{3}{2}$
Let r be the radius of the three largest circles and s be the radius of the smallest circles. Consider the equilateral triangle $\triangle A B C$ formed by the centers of the three largest circles. This triangle has side length $2 r$ and altitude $r \sqrt{3}$. Let O be the center of the smallest circle, and consider altitude $A M$, passing through O. $A O=r+s=\frac{2}{3} A M$, so the altitude is also $\frac{3}{2}(r+s)$. Equating these and solving for the ratio gives $\frac{s}{r}=\frac{2 \sqrt{3}}{3}-1$.
8. Three points are randomly placed on a circle. What is the probability that they lie on the same semicircle?
Answer: $\frac{3}{4}$
Suppose the first two points are separated by an angle α. Note that α is therefore randomly chosen between 0 and π. If we are to place the third point so that the three lie on the same semicircle, we have an arc of measure $2 \pi-\alpha$ to choose from. The probability of this placement is therefore $1-\frac{\alpha}{2 \pi}$. This varies evenly from 1 at $\alpha=0$ to $\frac{1}{2}$ at $\alpha=\pi$. The average is therefore $\frac{3}{4}$.
9. Two circles with centers A and B intersect at points X and Y. The minor arc $\angle X Y=120^{\circ}$ with respect to circle A, and $\angle X Y=60^{\circ}$ with respect to circle B. If $X Y=2$, find the area shared by the two circles.
Answer: $\frac{10 \pi-12 \sqrt{3}}{9}$, or $\frac{10 \pi}{9}-\frac{4 \sqrt{3}}{3}$
$\angle X A Y=120^{\circ}$, so the radius of circle A is $\frac{2 \sqrt{3}}{3} . \angle X B Y$ in 60°, so the radius of circle B is 2 . The area of the sector $A X Y$ is $\frac{1}{3}$ the area of circle A, so the area formed between segment $X Y$ and arc $X Y$ in circle A is the area of sector $A X Y$ inus the area of $\triangle A X Y$.

$$
\frac{1}{3} \pi\left(\frac{2 \sqrt{3}}{3}\right)^{2}-\frac{1}{2} \cdot 2 \cdot \frac{\sqrt{3}}{3}=\frac{4 \pi-3 \sqrt{3}}{9}
$$

Similarly, sector $B X Y$ is $\frac{1}{6}$ of the area of circle B, so the area formed between segment $X Y$ and arc $X Y$ in circle B is

$$
\frac{1}{6} \pi(2)^{2}-(2)^{2} \frac{\sqrt{3}}{4}=\frac{2 \pi-3 \sqrt{3}}{3}
$$

The total area shared by the two circles is then:

$$
\frac{4 \pi-3 \sqrt{3}}{9}+\frac{2 \pi-3 \sqrt{3}}{3}=\frac{10 \pi-12 \sqrt{3}}{9}
$$

10. Right triangle $A B C$ is inscribed in circle W. $\angle C A B=65^{\circ}$, and $\angle C B A=25^{\circ}$. The median from C to $A B$ intersects W at D. Line l_{1} is drawn tangent to W at A. Line l_{2} is drawn tangent to W at D. The lines l_{1} and l_{2} intersect at P. Compute $\angle A P D$.

Answer: 50 ${ }^{\circ}$

Note that $\angle A C B=90^{\circ}$, so $A B$ must be the diameter of W. Then $C O$ is the median from C to $A B$, where O is the origin of W, and $C D$ passes through O. Then $C O=B O$ and $\angle B C D=\angle C B A=25^{\circ}$. We calculate $\angle C O B=180^{\circ}-2 \times 25^{\circ}=130^{\circ}$. Then $\angle A O D=130^{\circ}$. Consider the quadrilateral $P D O A . \angle P=360^{\circ}-\angle B A D-\angle C D P-\angle A O D=360^{\circ}-90^{\circ}-90^{\circ}-130^{\circ}=50^{\circ}$.

