Fractions!

Prof. Kannan Soundararajan

Abstract

Consider the following two sets of fractions:

\[A = \left\{ 0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \right\} \quad \text{and} \quad B = \left\{ \frac{7}{30}, \frac{11}{30}, \frac{13}{30}, \frac{19}{30}, \frac{23}{30}, \frac{29}{30} \right\} \]

Thus, \(A \) contains all the reduced fractions in \([0, 1)\) with denominators 1, 2, 3, 5, and \(B \) contains all the reduced fractions in \([0, 1)\) with denominator 30. Amazingly, the fractions in \(A \) and \(B \) interlace: if you arrange all the fractions in ascending order, you will see that a fraction in \(A \) will be followed by one in \(B \) followed by one in \(A \) and so on! This is also related to an observation of Chebyshev that

\[\frac{(30n)!n!}{(15n)!(10n)!(6n)!} \]

is an integer for all natural numbers \(n \). I will explain work towards classifying all such sets of interlacing fractions, and the related question of finding integral factorial ratios.