1. Points A, B, C, and D lie on a circle. Let $A C$ and $B D$ intersect at point E inside the circle. If $[A B E] \cdot[C D E]=36$, what is the value of $[A D E] \cdot[B C E]$? (Given a triangle $\triangle A B C,[A B C]$ denotes its area.)
Answer: 36
Solution: Let $\angle A E B=\theta$. We see that

$$
[A B E] \cdot[C D E]=\frac{1}{2} \sin \theta(A E)(B E) \cdot \frac{1}{2} \sin \theta(C E)(D E) .
$$

Also,

$$
[A D E] \cdot[B C E]=\frac{1}{2} \sin \theta(A E)(D E) \cdot \frac{1}{2} \sin \theta(B E)(C E)
$$

Thus, $[A D E] \cdot[B C E]=[A B E] \cdot[C D E]=36$.
2. Let $A B C$ be an acute, scalene triangle. Let H be the orthocenter. Let the circle going through B, H, and C intersect $C A$ again at D. Given that $\angle A B H=20^{\circ}$, find, in degrees, $\angle B D C$.
Answer: 110°

Solution:

Let E, F, G be the feet of the perpendiculars from H to lines $B C, B D, A C$, respectively. Note that E, F, G are collinear (Simpson's line), and that $B H F E, H F G D, A B E G$ are cyclic. Angle chasing gives $\angle B D C=\angle F H G=\angle B E F=90+\angle H E F=90+\angle A B H=90+20=110^{\circ}$.
3. $\triangle A B C$ has side lengths 13,14 , and 15 . Let the feet of the altitudes from A, B, and C be D, E, and F, respectively. The circumcircle of $\triangle D E F$ intersects $A D, B E$, and $C F$ at I, J, and K respectively. What is the area of $\triangle I J K$?
Answer: 21
Solution: First we can find that the area of $\triangle A B C$ is 84 , either by noting that it can be split into 5-12-13 and 9-12-15 triangles, or using Heron's formula. Let the orthocenter of $\triangle A B C$ be H. The circumcircle of $D E F$ is the 9 -point circle of $\triangle A B C$ and thus I, J, K are the midpoints of $A H, B H, C H$. So, there is a homothety centered at H with factor $1 / 2$ that sends $\triangle A B C$ to $\triangle D E F$. Then, $[D E F]=(1 / 2)^{2}[A B C]=21$.
4. Let $A B C$ be a triangle with $\angle A=\frac{135}{2}^{\circ}$ and $\overline{B C}=15$. Square $W X Y Z$ is drawn inside $A B C$ such that W is on $A B, X$ is on $A C, Z$ is on $B C$, and triangle $Z B W$ is similar to triangle $A B C$, but $W Z$ is not parallel to $A C$. Over all possible triangles $A B C$, find the maximum area of $W X Y Z$.
Answer: $\frac{225 \sqrt{2}}{8}$
Solution: Let a, b, c be the lengths of sides $B C, A C$, and $A B$, respectfully, and let x be the sidelength of square $W X Y Z$. Note that the given similarity condition implies that $B Z=\frac{x c}{b}$. By angle chasing, we deduce that $Z X C$ is also similar to $A B C$, from which we obtain $Z C=\frac{x b \sqrt{2}}{c}$. Therefore, because $B Z+Z C=B C$, we get

$$
x=\frac{a}{\frac{c}{b}+\frac{b \sqrt{2}}{c}} .
$$

Because a is fixed, x is maximized when the denominator is minimized. By AM-GM, this occurs when $\frac{c}{b}=\frac{b \sqrt{2}}{c}$ which gives a value of $2 \sqrt[4]{2}$. Thus, the maximum area of the square is $x^{2}=\frac{225}{4 \sqrt{2}}=\frac{225 \sqrt{2}}{8}$.
5. In quadrilateral $A B C D, A B=20, B C=15, C D=7, D A=24$, and $A C=25$. Let the midpoint of $A C$ be M, and let $A C$ and $B D$ intersect at N. Find the length of $M N$.
Answer: $\frac{625}{78}$
Solution: Note that $\triangle A B C$ and $\triangle A D C$ are right triangles. Since $\angle A B C+\angle A D C=90^{\circ}+$ $90^{\circ}=180^{\circ}, \mathrm{ABCD}$ is cyclic with circumcircle centered at M and radius $\frac{25}{2}$. Also, since $A B>B C$ and $A D>D C$, we can see that $\triangle A B D$ is acute. In $\odot M, \angle A B D=\angle A C D$, so $\sin \angle A B D=\frac{24}{25}$ and $\cos \angle A B D=\frac{7}{25}$. By the law of cosines, $A D^{2}=A B^{2}+B D^{2}-2(A B)(B D) \cos \angle A B D$ $\Rightarrow 24^{2}=20^{2}+B D^{2}-2(20)(B D)\left(\frac{7}{25}\right)$. Solving the quadratic gives $B D=-\frac{44}{5}$ or 20 , so we have $B D=20$. Next, using the law of sines in $\triangle A B N$ and $\triangle A D N$ gives

$$
\frac{B N}{\sin \angle B A N}=\frac{A N}{\sin \angle A B N} \Rightarrow \frac{B N}{3 / 5}=\frac{A N}{24 / 25} \Rightarrow B N=\frac{5}{8} A N
$$

and

$$
\frac{D N}{\sin \angle D A N}=\frac{A N}{\sin \angle A D N} \Rightarrow \frac{D N}{7 / 25}=\frac{A N}{4 / 5} \Rightarrow D N=\frac{7}{20} A N .
$$

Combining this with $B N+D N=B D=20$, we get $B N=\frac{500}{39}$ and $D N=\frac{280}{39}$. Then, $A N=$ $\frac{8}{5} B N=\frac{800}{39}$. Finally, the $M N=A N-A M=\frac{800}{39}-\frac{25}{2}=\frac{625}{78}$.
6. Let the incircle of $\triangle A B C$ be tangent to $A B, B C, A C$ at points M, N, P, respectively. If $\measuredangle B A C=$ 30°, find $\frac{[B P C]}{[A B C]} \cdot \frac{[B M C]}{[A B C]}$, where $[A B C]$ denotes the area of $\triangle A B C$.
Answer: $\frac{1}{2}-\frac{\sqrt{3}}{4}$
Solution: If u, w denote the distance between P and M to $B C$ respectively, we need to compute $\frac{u w}{h_{a}^{2}}$. By Thales' theorem, we have that $\frac{u}{h_{a}}=\frac{C P}{C A}=\frac{p-c}{b}$ and $\frac{w}{h_{a}}=\frac{B M}{B A}=\frac{p-b}{c}$, where p is the semiperimeter of $\triangle A B C$. Let I be the incenter of $A B C$, and assume standard notation for sides and angles. Then, from the law of sines for $B M I$, we have that $p-b=B I \cos \frac{\beta}{2}$. From $A B I$, $B I=\frac{c}{\cos \frac{\gamma}{2}} \sin \frac{\alpha}{2}$, and so we get $\frac{p-b}{c}=\frac{\cos \frac{\beta}{2}}{\cos \frac{\gamma}{2}} \sin \frac{\alpha}{2}$. Analogously, $\frac{p-c}{b}=\frac{\cos \frac{\gamma}{2}}{\cos \frac{\beta}{2}} \sin \frac{\alpha}{2}$, and hence, $\frac{u w}{h_{a}^{2}}=\sin \frac{\alpha}{2}{ }^{2}$. Plugging in $\alpha=30$, we get $\frac{1}{2}-\frac{\sqrt{3}}{4}$.
7. $\triangle A B C$ has side lengths $A B=20, B C=15$, and $C A=7$. Let the altitudes of $\triangle A B C$ be $A D$, $B E$, and $C F$. What is the distance between the orthocenter (intersection of the altitudes) of $\triangle A B C$ and the incenter of $\triangle D E F$?
Answer: 15
Solution: Note that $7^{2}+15^{2}=274<400=20^{2}$, so $\triangle A B C$ is obtuse, which means the orthocenter, which we will denote H, lies outside $\triangle A B C$. We have $\angle A D B=\angle B E A=90^{\circ}$, so quadrilateral $A D E B$ is cyclic. In $(A D E B)$, we can see that $\angle A E D=A B D$. Also, since $\angle A F H=\angle A E H=90^{\circ}$, quadrilateral $A F E H$ is cyclic. In $(A F E H)$, we can see that $\angle A E F=$ $\angle A H F=90^{\circ}-\angle H A F=90^{\circ}-\left(90^{\circ}-A B D\right)=\angle A B D$. So, $A E D=A E F$, which means AE bisects $\angle D E F$. Similarly, we can show that $B D$ bisects $\angle E D F$. Therefore, the incenter of $\triangle D E F$ is the intersection of $A E$ and $B D$, which is C.
We see that $C F=A C \sin \angle B A C$. Also,

$$
H F=A F \tan \angle H A F=(A C \cos \angle B A C) \tan \left(90^{\circ}-\angle A B C\right)=A C \cos \angle B A C \cot \angle A B C .
$$

Now, we want to calculate

$$
H C=H F-C F=A C \cos \angle B A C \cot \angle A B C-A C \sin \angle B A C .
$$

Using the law of cosines, we have $\cos \angle B A C=\frac{7^{2}+20^{2}-15^{2}}{2 \cdot 7 \cdot 20}=\frac{4}{5}$, so $\sin \angle B A C=\frac{3}{5}$. Also, $\cos \angle A B C=\frac{15^{2}+20^{2}-7^{2}}{2 \cdot 15 \cdot 20}=\frac{24}{25}$, so $\sin \angle A B C=\frac{7}{25}$ and $\cot \angle A B C=\frac{24}{7}$. Finally, we have $H C=A C(\cos \angle B A C \cot \angle A B C-\sin \angle B A C)=7\left(\frac{4}{5} \cdot \frac{24}{7}-\frac{3}{5}\right)=15$.
8. Let Γ and Ω be circles that are internally tangent at a point P such that Γ is contained entirely in Ω. Let A, B be points on Ω such that the lines $P B$ and $P A$ intersect the circle Γ at Y and X respectively, where $X, Y \neq P$. Let O_{1} be the circle with diameter $A B$ and O_{2} be the circle with diameter $X Y$. Let F be the foot of Y on $X P$. Let T and M be points on O_{1} and O_{2} respectively such that $T M$ is a common tangent to O_{1} and O_{2}. Let H be the orthocenter of $\triangle A B P$. Given that $P F=12, F X=15, T M=18, P B=50$, find the length of $A H$.
Answer: $\frac{750}{\sqrt{481}}$

Solution:

Since Γ and Ω are tangent at P, there exists a homothety centered at P which maps Γ to Ω. Denote this homothety by h. Let k be its common ratio. We can see that A, B must be the image of the points X, Y under h respectively. Thus, $h\left(O_{2}\right)=O_{1}$. Therefore, the common tangents to O_{1} and O_{2} intersect at P. Hence, P, M, T are collinear, since $h(M)=T$.

Observe that the power of the point P with respect to O_{2} is given by $P F \cdot P X=324$. However, $P M$ is tangent to O_{1}, and thus the power of P with respect to O_{1} is $P M^{2}=P F \cdot P X=324$.

This gives us that $P M=\sqrt{324}=18$ and $P T=18+18=36$. Thus, the common ratio of the homothety is $k=\frac{P T}{P M}=2$. Let F_{1} be the foot of B on $A P$. Then, we have that $P F_{1}=2 \cdot P F=24$. Additionally, we can see that $P A=2 \cdot P X=54$. Therefore, $A F_{1}=30$.

Similarly, we can compute $P Y$ since $P Y=\frac{1}{2} \cdot P B=25$. Therefore, by the Pythagorean theorem, we obtain

$$
F Y=\sqrt{P Y^{2}-P F^{2}}=\sqrt{25^{2}-12^{2}}=\sqrt{481}
$$

Let F_{2} be the foot of A onto $P B$. Then, H is the intersection of $A F_{2}$ and $B F_{1}$. Now observe that $\angle F_{1} A H=\angle P A F_{1}=90^{\circ}-\angle A P F_{2}=90^{\circ}-\angle F P Y=\angle F Y P$. Thus, by AA, we have $\triangle A F_{1} H \sim \triangle Y F P$. Thus,

$$
\frac{A F_{1}}{A H}=\frac{F Y}{P Y} \Longrightarrow A H=\frac{A F_{1} \cdot P Y}{F Y}=\frac{30 \cdot 25}{\sqrt{481}}
$$

Thus, $A H=\frac{750}{\sqrt{481}}$.
9. The bisector of $\angle B A C$ in $\triangle A B C$ intersects $B C$ in point L. The external bisector of $\angle A C B$ intersects $\overrightarrow{B A}$ in point K. If the length of $A K$ is equal to the perimeter of $\triangle A C L, L B=1$, and $\angle A B C=36^{\circ}$, find the length of $A C$.
Answer: 1
Solution: Let T be a point on $\overrightarrow{A C}$ such that $A T=A K$. Then, $\measuredangle A T K=\measuredangle A K T=\frac{\alpha}{2}$. Now let $B^{\prime} \in \overrightarrow{L B}$ such that $L B^{\prime}=A L$. We then have $C B^{\prime}=C T$ and since $\measuredangle B^{\prime} C K=\measuredangle T C K=$ $90+\frac{\gamma}{2}$, we attain $\triangle K C B^{\prime} \cong K C T$. Therefore, $\measuredangle C B^{\prime} K=\frac{\alpha}{2}$. If B^{\prime} is between L and B, then $\measuredangle C B^{\prime} K<\measuredangle C B^{\prime} A=\measuredangle L A B^{\prime}<\frac{\alpha}{2}$ which is a contradiction. Similarly, if B is between L and B^{\prime}, we get that $\measuredangle C B^{\prime} K>\measuredangle C B^{\prime} A=\measuredangle L A B^{\prime}>\frac{\alpha}{2}$, which is also a contradiction. Therefore, $B^{\prime} \equiv B$ and $\measuredangle C B A=\frac{\alpha}{2}=36^{\circ}$. We now get $\alpha=72^{\circ}$ and so, $L B=A L=A C=1$, as desired.
10. Let $A B C D E F G H$ be a regular octagon with side length $\sqrt{60}$. Let \mathcal{K} denote the locus of all points K such that the circumcircles (possibly degenerate) of triangles $H A K$ and $D C K$ are tangent. Find the area of the region that \mathcal{K} encloses.
Answer: $(240+180 \sqrt{2}) \pi$
Solution: Let the side length of our octagon be s. We will plug in $\sqrt{60}$ later. Consider the radical center of the circles $(A B C D E F G H),(H A K)$, and $(D C K)$. Note that it is the intersection of lines $D C$ and $H A$. Let this intersection point be I. Then it becomes clear that \mathcal{K} is a circle centered at I, since we have that

$$
K I^{2}=D I \cdot C I \Longrightarrow K I \text { is fixed }
$$

by Power of a Point. It is also not hard to see that any point K on this circle will work. Now we need only compute $D I \cdot C I$. Note that from similar triangles $H D I$ and $A C I$ we have

$$
\frac{H D}{A C}=\frac{D I}{C I}=\frac{s+C I}{C I} \Longrightarrow C I=\frac{A C}{H D-A C} s
$$

Then from the property that $A C E$ is an isosceles right triangle and that $A E=H D$ we have that $H D=\sqrt{2} A C$, and so

$$
C I=\frac{s}{\sqrt{2}-1}=s(1+\sqrt{2})
$$

and then because $D I=C I+s$ we have that

$$
D I \cdot C I=s^{2}(1+\sqrt{2})(2+\sqrt{2})=s^{2}(4+3 \sqrt{2})
$$

hence the area of \mathcal{K} is $s^{2}(4+3 \sqrt{2}) \pi$. Substituting $s^{2}=60$ we get that the area of \mathcal{K} is $(240+180 \sqrt{2}) \pi$.

