1. Compute

$$
\int_{0}^{10}(x-5)+(x-5)^{2}+(x-5)^{3} d x
$$

Answer: $\frac{250}{3}$
Solution: This integral is equivalent to
$\int_{-5}^{5} x+x^{2}+x^{3} d x=\int_{-5}^{5} x^{2} d x=\frac{5^{3}}{3}-\frac{(-5)^{3}}{3}=\frac{250}{3}$.
2. Water is flowing out through the smaller base of a hollow conical frustum formed by taking a downwards pointing cone of radius 12 m and slicing off the tip of the cone in a cut parallel to the base so that the radius of the cross-section of the slice is 6 m (meaning the smaller base has a radius of 6 m). The height of the frustum is 10 m . If the height of the water level in the frustum is decreasing at $3 \mathrm{~m} / \mathrm{s}$ and the current height is 5 m , then the volume of the water in the frustum is decreasing at $d \mathrm{~m}^{3} / \mathrm{s}$. Compute d.

Answer: 243

Solution: Let the radii of the bases of the frustum be $r_{1}=6$ and $r_{2}=12$, and let the height be $h=10$. Also, let the current height of the water in the frustum be $h_{c}=5$, the radius of the surface of the water be r_{c}, and the height of the part of the cone that was cut off to make the frustum be h_{0}.
First, we can find h_{0} using similar triangles. We have

$$
\frac{h_{0}}{h_{0}+h}=\frac{r_{1}}{r_{2}} \Rightarrow h_{0} r_{2}=h_{0} r_{1}+h r_{1} \Rightarrow h_{0}=\frac{h r_{1}}{r_{2}-r_{1}}=\frac{10 \cdot 6}{12-6}=10 .
$$

We can also find r_{c} in terms of h_{c} :

$$
\frac{r_{c}}{r_{1}}=\frac{h_{0}+h_{c}}{h_{0}} \Rightarrow r_{c}=r_{1} \frac{h_{0}+h_{c}}{h_{0}} .
$$

The volume of the water in the frustum is

$$
V=\frac{1}{3} \pi r_{c}^{2}\left(h_{0}+h_{c}\right)-\frac{1}{3} \pi r_{1}^{2} h_{0}=\frac{1}{3} \pi r_{1}^{2} \frac{\left(h_{0}+h_{c}\right)^{2}}{h_{0}^{2}}\left(h_{0}+h_{c}\right)-\frac{1}{3} \pi r_{1}^{2} h_{0} .
$$

Taking the derivative with respect to time gives

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{1}{3} \pi r_{1}^{2} \cdot 3 \frac{\left(h_{0}+h_{c}\right)^{2}}{h_{0}^{2}} \cdot \frac{d h_{c}}{d t} \\
& =\frac{1}{3} \pi \cdot 6^{2} \cdot 3 \cdot \frac{(10+5)^{2}}{10^{2}} \cdot 3 \\
& =243 \pi .
\end{aligned}
$$

3. Compute the value of

$$
\int_{-\pi}^{\pi} \frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}-x \sqrt{2}}|x| d x
$$

Answer: $\frac{1}{2} \ln \left(e^{2 \pi^{2}}-2 \pi^{2}\right)$

Solution: Let I denote the value of the integral. We first split the integral into two parts

$$
I=\int_{-\pi}^{0} \frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}-x \sqrt{2}}|x| d x+\int_{0}^{\pi} \frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}-x \sqrt{2}}|x| d x
$$

Since $|x|=x$ for $x>0$ and $|x|=-x$ for $x<0$, we have

$$
I=\int_{-\pi}^{0} \frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}-x \sqrt{2}}(-x) d x+\int_{0}^{\pi} \frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}-x \sqrt{2}} x d x
$$

Performing a substitution $x \rightarrow-x$ on the first integral gives

$$
I=\int_{0}^{\pi} \frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}+x \sqrt{2}} x d x+\int_{0}^{\pi} \frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}-x \sqrt{2}} x d x=\int_{0}^{\pi} \frac{\left(2 e^{2 x^{2}}-2\right) x}{e^{2 x^{2}}-2 x^{2}} d x
$$

Now, the indefinite integral can be solved by performing the substitution $v=e^{2 x^{2}}-2 x^{2}$.

$$
\int \frac{\left(2 e^{2 x^{2}}-2\right) x}{e^{2 x^{2}}-2 x^{2}} d x=\int \frac{d v}{2 v}=\frac{1}{2} \ln v
$$

Therefore, $\int_{0}^{\pi} \frac{\left(2 e^{2 x^{2}}-2\right) x}{e^{2 x^{2}}-2 x^{2}} d x=\left.\left[\frac{1}{2} \ln v\right]\right|_{0} ^{\pi}=\left.\left[\frac{1}{2} \ln \left(e^{2 x^{2}}-2 x^{2}\right)\right]\right|_{0} ^{\pi}=\frac{1}{2} \ln \left(e^{2 \pi^{2}}-2 \pi^{2}\right)$.

