Time limit: 50 minutes.
Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise.
No calculators.

1. If $f(x)=x^{4}+4 x^{3}+7 x^{2}+6 x+2022$, compute $f^{\prime}(3)$.
2. The straight line $y=a x+16$ intersects the graph of $y=x^{3}$ at 2 distinct points. What is the value of a ?
3. For $k=1,2, \ldots$, let f_{k} be the number of times

$$
\sin \left(\frac{k \pi x}{2}\right)
$$

attains its maximum value on the interval $x \in[0,1]$. Compute

$$
\lim _{k \rightarrow \infty} \frac{f_{k}}{k} .
$$

4. Evaluate the integral:

$$
\int_{\frac{\pi^{2}}{4}}^{4 \pi^{2}} \sin (\sqrt{x}) d x
$$

5. A net for a hexagonal pyramid is constructed by placing a triangle with side lengths x, x, and y on each side of a regular hexagon with side length y. What is the maximum volume of the pyramid formed by the net if $x+y=20$?
6. Let

$$
f(x)=\cos \left(x^{3}-4 x^{2}+5 x-2\right) .
$$

If we let $f^{(k)}$ denote the k th derivative of f, compute $f^{(10)}(1)$. For the sake of this problem, note that $10!=3628800$.
7. Let

$$
A_{j}=\left\{(x, y): 0 \leq x \sin \left(\frac{j \pi}{3}\right)+y \cos \left(\frac{j \pi}{3}\right) \leq 6-\left(x \cos \left(\frac{j \pi}{3}\right)-y \sin \left(\frac{j \pi}{3}\right)\right)^{2}\right\}
$$

The area of $\cup_{j=0}^{5} A_{j}$ can be expressed as $m \sqrt{n}$. What is the area?
8. Given that

$$
A=\sum_{n=1}^{\infty} \frac{\sin (n)}{n},
$$

determine $\lfloor 100 A\rfloor$.
9. Let $f(x, y)=(\cos x+y \sin x)^{2}$. We may express $\max _{x} f(x, y)$, the maximum value of $f(x, y)$ over all values of x for a given fixed value of y, as a function of y, call it $g(y)$. Let the smallest positive value x which achieves this maximum value of $f(x, y)$ for a given y be $h(y)$. Compute

$$
\int_{1}^{2+\sqrt{3}} \frac{h(y)}{g(y)} \mathrm{d} y .
$$

10. Consider the set of continuous functions f, whose $n^{\text {th }}$ derivative exists for all positive integer n, satisfying $f(x)=\frac{\mathrm{d}^{3}}{\mathrm{~d} x^{3}} f(x), f(0)+f^{\prime}(0)+f^{\prime \prime}(0)=0$, and $f(0)=f^{\prime}(0)$. For each such function f, let $m(f)$ be the smallest nonnegative x satisfying $f(x)=0$. Compute all possible values of $m(f)$.
