1. If x, y, and z are real numbers such that $x^{2}+2 y^{2}+3 z^{2}=96$, what is the maximum possible value of $x+2 y+3 z ?$
Answer: 24
Solution: By the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& (1+2+3)\left(x^{2}+2 y^{2}+3 z^{2}\right) \geq(x+2 y+3 z)^{2} \\
\Rightarrow & 6 \cdot 96 \geq(x+2 y+3 z)^{2} \\
\Rightarrow & 24 \geq x+2 y+3 z \geq-24 \\
\Rightarrow & 24 \geq x+2 y+3 z
\end{aligned}
$$

2. What is the area of the region in the complex plane consisting of all points z satisfying both $\left|\frac{1}{z}-1\right|<1$ and $|z-1|<1$? $(|z|$ denotes the magnitude of a complex number, i.e. $|a+b i|=$ $\sqrt{a^{2}+b^{2}}$.)
Answer: $\frac{2 \pi}{3}+\frac{\sqrt{3}}{4}$
Solution: Let $z=a+b i$. The first inequality becomes $\left|\frac{1}{a+b i}-1\right|<1$, which we can write as $\left|\frac{a-b i}{a^{2}+b^{2}}-\frac{a^{2}+b^{2}}{a^{2}+b^{2}}\right|<1$. Using the definition of magnitude, we have $\frac{\left(a-\left(a^{2}+b^{2}\right)\right)^{2}+b^{2}}{\left(a^{2}+b^{2}\right)^{2}}<1$, which can be expanded and factored to give

$$
\begin{aligned}
& \frac{a^{2}-2 a\left(a^{2}+b^{2}\right)+\left(a^{2}+b^{2}\right)^{2}+b^{2}}{\left(a^{2}+b^{2}\right)^{2}}<1 \\
& \Rightarrow \frac{1-2 a+a^{2}+b^{2}}{a^{2}+b^{2}}<1 \\
& \Rightarrow \frac{1-2 a}{a^{2}+b^{2}}<0
\end{aligned}
$$

Thus, the first inequality is satisfied when $a>\frac{1}{2}$. For the second inequality, we see that the points are the interior of the circle centered at 1 with radius 1 . We now need to find the area of the region of the circle to the right of $a=\frac{1}{2}$. Let the center of the circle be O, and let $a=\frac{1}{2}$ intersect the circle at points A and B. Let the midpoint of $A B$ be M. We see that $\triangle A O M$ is a 30-60-90 triangle, so $\angle A O B=120^{\circ}$. Thus, the area we want is $\frac{2}{3}$ of the area of the circle plus the area of $\triangle A O B$, giving us $\frac{2 \pi}{3}+\frac{\sqrt{3}}{4}$.
3. Determine

$$
\left\lfloor\prod_{n=2}^{2022} \frac{2 n+2}{2 n+1}\right\rfloor
$$

given that the answer is relatively prime to 2022.
Answer: 29
Solution: Let this product have value P. The desired answer is $\lfloor P\rfloor$. We would like to find a way to make this product telescope. Consider

$$
\frac{(2 n+2)(2 n+3)}{(2 n+1)(2 n+2)}
$$

Note that

$$
\frac{(2 n+2)(2 n+3)}{(2 n+1)(2 n+2)}<\frac{(2 n+2)^{2}}{(2 n+1)^{2}} \Longleftrightarrow \frac{2 n+3}{2 n+2}<\frac{2 n+2}{2 n+1}
$$

So we can bound this product below by

$$
P^{2}>\prod_{n=2}^{2022} \frac{(2 n+2)(2 n+3)}{(2 n+1)(2 n+2)}>809 \Longrightarrow P>28
$$

However, by similar logic, we may also use the fraction $\frac{(2 n+2)(2 n+1)}{(2 n+1)(2 n)}$ to bound our product below. The tricky part here is that we must exclude some terms to increase our accuracy slightly. We have

$$
\begin{aligned}
P^{2}<\frac{6^{2}}{5^{2}} \cdot \frac{8^{2}}{7^{2}} \prod_{n=3}^{2022} \frac{(2 n+2)(2 n+1)}{(2 n+1)(2 n)} & =\frac{36}{25} \cdot \frac{64}{49} \cdot \frac{4046}{8}=\frac{36}{25} \cdot \frac{8}{49} \cdot 4046=\frac{48}{49} \cdot \frac{6}{5} \cdot \frac{4046}{5} \\
<\frac{48}{49} \cdot \frac{6}{5} \cdot 810=\frac{48}{49} \cdot 972 & <\frac{48}{49} \cdot 980=48 \cdot 20=960<961 \\
& \Longrightarrow P<31
\end{aligned}
$$

Hence, since P is also coprime to $2022, P \neq 30$, and so $P=29$.

