1. Compute

$$
\frac{5+\sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{7+\sqrt{12}}{\sqrt{3}+\sqrt{4}}+\cdots+\frac{63+\sqrt{992}}{\sqrt{31}+\sqrt{32}}
$$

Answer: $126 \sqrt{2}$
Solution: Rationalizing the denominators turns the numerators into differences of cubes, which gives

$$
\begin{aligned}
3 \sqrt{3}-2 \sqrt{2}+4 \sqrt{4}-3 \sqrt{3}+\cdots+32 \sqrt{32}-31 \sqrt{31} & =32 \sqrt{32}-2 \sqrt{2} \\
& =128 \sqrt{2}-2 \sqrt{2} \\
& =126 \sqrt{2} .
\end{aligned}
$$

2. Find the sum of the solution(s) x to the equation

$$
\begin{equation*}
x=\sqrt{2022+\sqrt{2022+x}} . \tag{1}
\end{equation*}
$$

Answer: $\frac{1+\sqrt{8089}}{2}$
Solution: Consider the following equations:

$$
\begin{gather*}
y=\sqrt{2022+y} \tag{*}\\
x=\sqrt{2022+\sqrt{2022+x}} \tag{**}
\end{gather*}
$$

Equation (*) and Equation (**) have the same solution, since if you plug the definition into the RHS repeatedly, replacing y for the first equation $\sqrt{2022+y}$ and replacing x in the second equation with $\sqrt{2022+x}$, then you arrive at $x=\sqrt{2022+\sqrt{2022+\sqrt{2022 \ldots}}}=y$. To solve for $(*)$, we simply square on both sides and solve the quadratic. We discard the extraneous solution to get $\frac{1+\sqrt{8089}}{2}$.
3. Compute $\left\lfloor\frac{1}{\frac{1}{2022}+\frac{1}{2023}+\cdots+\frac{1}{2064}}\right\rfloor$.

Answer: 47

Solution: Note that

$$
\frac{1}{2022}>\frac{1}{2023}, \frac{1}{2024}, \ldots, \frac{1}{2064}
$$

Therefore,

$$
\frac{1}{2022}+\frac{1}{2023}+\cdots+\frac{1}{2064}<43 \cdot \frac{1}{2022}
$$

which implies that

$$
\frac{1}{\frac{1}{2022}+\frac{1}{2023}+\cdots+\frac{1}{2064}}>\frac{1}{43 \cdot \frac{1}{2022}}=\frac{2022}{43}=47 \frac{1}{43} .
$$

Similarly,

$$
\frac{1}{2064}<\frac{1}{2022}, \frac{1}{2023}, \frac{1}{2024}, \ldots, \frac{1}{2063} .
$$

Therefore,

$$
\frac{1}{2022}+\frac{1}{2023}+\cdots+\frac{1}{2064}>43 \cdot \frac{1}{2064}
$$

which implies that

$$
\frac{1}{\frac{1}{2022}+\frac{1}{2023}+\cdots+\frac{1}{2064}}<\frac{1}{43 \cdot \frac{1}{2064}}=\frac{2064}{43}=48 .
$$

Therefore, since

$$
47 \frac{1}{43}<\frac{1}{\frac{1}{2022}+\frac{1}{2023}+\cdots+\frac{1}{2064}}<48
$$

we have

$$
\left\lfloor\frac{1}{\frac{1}{2022}+\frac{1}{2023}+\cdots+\frac{1}{2064}}\right\rfloor=47
$$

4. Let the roots of

$$
x^{2022}-7 x^{2021}+8 x^{2}+4 x+2
$$

be $r_{1}, r_{2}, \cdots, r_{2022}$, the roots of

$$
x^{2022}-8 x^{2021}+27 x^{2}+9 x+3
$$

be $s_{1}, s_{2}, \cdots, s_{2022}$, and the roots of

$$
x^{2022}-9 x^{2021}+64 x^{2}+16 x+4
$$

be $t_{1}, t_{2}, \cdots, t_{2022}$. Compute the value of

$$
\sum_{1 \leq i, j \leq 2022} r_{i} s_{j}+\sum_{1 \leq i, j \leq 2022} s_{i} t_{j}+\sum_{1 \leq i, j \leq 2022} t_{i} r_{j}
$$

Answer: 191

Solution: We wish to compute

$$
\begin{gathered}
\sum_{1 \leq i, j \leq 2022} r_{i} s_{j}+\sum_{1 \leq i, j \leq 2022} s_{i} t_{j}+\sum_{1 \leq i, j \leq 2022} t_{i} r_{j} \\
=\frac{1}{2}\left(\left(r_{1}+r_{2}+\cdots+r_{2022}+s_{1}+s_{2}+\cdots+s_{2022}+t_{1}+t_{2}+\cdots+t_{2022}\right)^{2}\right. \\
\left.-\left(r_{1}^{2}+r_{2}^{2}+\cdots+r_{2022}^{2}+s_{1}^{2}+s_{2}^{2}+\cdots+s_{2022}^{2}+t_{1}^{2}+t_{2}^{2}+\cdots+t_{2022}^{2}\right)\right) \\
-\sum_{1 \leq i<j \leq 2022} r_{i} r_{j}-\sum_{1 \leq i<j \leq 2022} s_{i} s_{j}-\sum_{1 \leq i<j \leq 2022} t_{i} t_{j}
\end{gathered}
$$

We have $r_{1}^{2}+r_{2}^{2}+\cdots+r_{2022}^{2}=\left(r_{1}+r_{2}+\cdots+r_{2022}\right)^{2}-2 \sum_{1 \leq i<j \leq 2022} r_{i} r_{j}$. Substituting this in for each of r, s, and t gives us

$$
\begin{gathered}
=\frac{1}{2}\left(\left(r_{1}+r_{2}+\cdots+r_{2022}+s_{1}+s_{2}+\cdots+s_{2022}+t_{1}+t_{2}+\cdots+t_{2022}\right)^{2}\right. \\
\left.-\left(r_{1}+r_{2}+\cdots+r_{2022}\right)^{2}-\left(s_{1}+s_{2}+\cdots+s_{2022}\right)^{2}-\left(t_{1}+t_{2}+\cdots+t_{2022}\right)^{2}\right)
\end{gathered}
$$

Using Vieta's formulas, this is equal to

$$
\frac{1}{2}\left((7+8+9)^{2}-7^{2}-8^{2}-9^{2}\right)=7 \cdot 8+8 \cdot 9+9 \cdot 7=191
$$

5. x, y, and z are real numbers such that $x y z=10$. What is the maximum possible value of $x^{3} y^{3} z^{3}-3 x^{4}-12 y^{2}-12 z^{4} ?$
Answer: 760
Solution: We can use the AM-GM inequality to minimize $3 x^{4}+12 y^{2}+12 z^{4}$, which will maximize the overall expression. To make all the exponents the same on the geometric mean side, we split $12 y^{2}$ into $6 y^{2}+6 y^{2}$. We have $3 x^{4}+6 y^{2}+6 y^{2}+12 z^{4} \geq 4 \sqrt[4]{1296 x^{4} y^{4} z^{4}}=24 x y z=240$. So, $x^{3} y^{3} z^{3}-3 x^{4}-12 y^{2}-12 z^{4} \leq 1000-240=760$.
6. Compute

$$
\cot \left(\sum_{n=1}^{23} \cot ^{-1}\left(1+\sum_{k=1}^{n} 2 k\right)\right)
$$

Answer: $\frac{25}{23}$

Solution: Let the sum inside the cot be S. Then, we have

$$
S=\sum_{n=1}^{23} \cot ^{-1}(1+n(n+1))
$$

Note that $\cot ^{-1} a-\cot ^{-1} b=\tan ^{-1} a-\tan ^{-1} b=\tan ^{-1}\left(\frac{\frac{1}{a}-\frac{1}{b}}{1+\frac{1}{a b}}\right)=\tan ^{-1}\left(\frac{b-a}{a b+1}\right)=\cot ^{-1}\left(\frac{a b+1}{b-a}\right)$, so $\cot ^{-1}(1+n(n+1))=\cot ^{-1} \frac{1}{n}-\cot ^{-1} \frac{1}{n+1}$. Telescoping, our sum becomes

$$
S=\cot ^{-1} \frac{1}{1}-\cot ^{-1} \frac{1}{24}=\cot ^{-1} \frac{25}{23}
$$

which gives $\cot S=\frac{25}{23}$.
7. Let $M=\{0,1,2, \ldots, 2022\}$ and let $f: M \times M \rightarrow M$ such that for any $a, b \in M$,

$$
f(a, f(b, a))=b
$$

and $f(x, x) \neq x$ for each $x \in M$. How many possible functions f are there $(\bmod 1000)$?
Answer: 0
Solution: No such functions f exist.
Suppose otherwise. Write $f(b, a)=c$. Then by the condition in the problem, $f(a, c)=b$ and $f(c, b)=f(c, f(a, c))=a$. Consider the set

$$
S=\{(x, y, z) \mid f(x, y)=z, x, y, z \in M\}
$$

By our observation above, $(x, y, z) \in S$ if and only if $(y, z, x) \in S$. Hence we may partition S into set of the form $\{(x, y, z),(y, z, x),(z, x, y)\}$ for x, y, z not all equal (since it is known $(x, x, x) \notin S)$. Hence 3 divides $|S|$. Then, $|S|=|M|^{2}=2023^{2}$, as to form elements in S, we can arbitrarily choose x and y while z is then determined. This is a contradiction as 3 does not divide 2023^{2}.
8. For all positive integers $m>10^{2022}$, determine the maximum number of real solutions $x>0$ of the equation $m x=\left\lfloor x^{11 / 10}\right\rfloor$.
Answer: 10
Solution: We claim that there can never be more than 10 solutions. Clearly, x will never be very small, since m is so large. Let $x=\left(k^{10}+\epsilon\right)$ for some small ϵ and some positive integer k as large as possible. Then we may Taylor Expand

$$
k^{11}<m\left(k^{10}+\epsilon\right)<\left(k^{10}+\epsilon\right)^{11 / 10}=k^{11}+\frac{11}{10} k \epsilon+\frac{1}{2} \cdot \frac{11}{10} \cdot \frac{1}{10} k^{-9} \epsilon^{2}+\cdots
$$

It is clear that $\left\lfloor x^{11 / 10}\right\rfloor=\left\lfloor k^{11}+\frac{11}{10} k \epsilon\right\rfloor$, since because k is much larger than ϵ, the remaining terms in the summation will be negligible decimals. Using the fact that k is an integer, we may write

$$
\begin{gathered}
m\left(k^{10}+\epsilon\right)=\left\lfloor\left(k^{10}+\epsilon\right)^{11 / 10}\right\rfloor=\left\lfloor k^{11}+\frac{11}{10} k \epsilon\right\rfloor=k^{11}+\frac{11}{10} k \epsilon-\left\{\frac{11}{10} k \epsilon\right\} \\
(m-k)\left(k^{10}+\epsilon\right)=\frac{1}{10} k \epsilon-\left\{\frac{11}{10} k \epsilon\right\}
\end{gathered}
$$

Now since the LHS is on the order of k^{10}, it must in fact be 0 (we could obtain this by bounding it below my removing the epsilon and getting a contradicting inequality), and so

$$
\frac{1}{10} k \epsilon=\left\{\frac{11}{10} k \epsilon\right\}
$$

Therefore, $\frac{11}{10} k \epsilon-\left\lfloor\frac{11}{10} k \epsilon\right\rfloor=\frac{1}{10} k \epsilon$ and so $\left\lfloor\frac{11}{10} k \epsilon\right\rfloor=k \epsilon$, and so $k \epsilon$ is an integer. Taking the floor of the expression above, we find that $\left\lfloor\frac{1}{10} k \epsilon\right\rfloor=0$. Therefore, $k \epsilon$ can only take on the values $0,1,2, \ldots, 9$, and we have achieved 10 solutions, as desired.
We can additionally show this is achievable. It is not hard to see that $x=\left(10^{2022}+1\right)^{10}+\frac{r}{10^{2022}+1}$ for $r=0,1,2, \ldots, 9$ all satisfy this equation for $m=10^{2022}+1$.
9. Let $P(x)=8 x^{3}+a x^{2}+b x+1$ for $a, b \in \mathbb{Z}$. It is known that P has a root $x_{0}=p+\sqrt{q}+\sqrt[3]{r}$, where $p, q, r \in \mathbb{Q}, q \geq 0$; however, P has no rational roots. Find the smallest possible value of $a+b$.

Answer: -6
Solution: We have $P\left(x_{0}\right)=0$ and $x_{0}=p+\sqrt{q}+\sqrt[3]{r}$. Note that $P \in \mathbb{Q}[x]$ (since $\mathbb{Q}[x] \equiv \mathbb{Z}[x]$) and $\operatorname{deg} P=3$. Moreover, observe that if $r=0, P$ has at least one rational root, hence $r \neq 0$. Now consider the polynomial

$$
Q(x)=(x-p-\sqrt{q})^{3}-r .
$$

Trivially, $Q\left(x_{0}\right)=0$, and $Q \in \mathbb{Q}[\sqrt{q}]$, i.e. the coefficients of Q are of the form $\alpha+\beta \sqrt{q}$ for $\alpha, \beta \in \mathbb{Q}$. Since $\operatorname{deg} Q=3$, we can express P in terms of Q as

$$
P(x)=8 Q(x)+R(x)
$$

where $R \in \mathbb{Q}[\sqrt{q}]$, $\operatorname{deg} R \leq 2$. Since $P\left(x_{0}\right)=Q\left(x_{0}\right)$, it follows that $R\left(x_{0}\right)=0$. We consider cases for the degree of $R(x)$:

- Case 1: $\operatorname{deg} R=2$. If $R \mid P$, then $\frac{P}{R} \in \mathbb{Q}[q]$ and is of degree 1 , hence P has a rational zero, which is a contradiction. If $R \nmid P$, we can divide with remainder to get

$$
P(x)=c\left(x-x_{r}\right) R(x)+S(x)
$$

We now have that $S \in \mathbb{Q}[\sqrt{q}]$ and $S\left(x_{0}\right)=0$, hence $x_{0} \in \mathbb{Q}[\sqrt{q}](\operatorname{deg} S=1)$, which is again a contradict.

- Case 2: $\operatorname{deg} R=1$. Since $R\left(x_{0}\right)=0$, as above, $x_{0} \in \mathbb{Q}[\sqrt{q}](\operatorname{deg} S=1)$, which is a contradiction.

We therefore have that $\operatorname{deg} R=0$, and we can consider without loss of generality that $P(x)=$ $8 Q(x)$ (if $R(x)=c, c$ can be absorbed by r). Since the coefficients of P are integers, $q=0$. Expanding Q we therefore get

$$
P(x)=8 Q(x)=8 x^{3}-3 \cdot 8 x^{2} p+3 \cdot 8 x p^{2}-8 p^{3}-8 r
$$

where all coefficients are integers and $8 p^{3}+8 r=-1$. We seek the minimum value of $a+$ $b=24\left(p^{2}-p\right)$. The minimum of the function is at $p=\frac{1}{2}$, for which we find $r=-\frac{1}{4}$ and $P(x)=8 x^{3}-12 x^{2}+6 x+1=(2 x-1)^{3}+2$. Finally, $a+b=-6$.
10. Let $f^{1}(x)=x^{3}-3 x$. Let $f^{n}(x)=f\left(f^{n-1}(x)\right)$. Let \mathcal{R} be the set of roots of $\frac{f^{2022}(x)}{x}$. If

$$
\sum_{r \in \mathcal{R}} \frac{1}{r^{2}}=\frac{a^{b}-c}{d}
$$

for positive integers a, b, c, d, where b is as large as possible and c and d are relatively prime, find $a+b+c+d$.

Answer: 4072
Solution: Consider the substitution $x=2 \cos t$. From this we obtain that $f^{1}(2 \cos t)=8 \cos ^{3} t-$ $6 \cos t=2\left(4 \cos ^{3} t-3 \cos t\right)=2 \cos 3 t$. Thus $f^{2022}(2 \cos t)=2 \cos 3^{2022} t$. Therefore $f^{2022}(x)$ is the 3^{2022} th Dickson Polynomial and has the form

$$
f^{2022}(x)=\sum_{k=0}^{\frac{3^{2022}-1}{2}} \frac{3^{2022}}{3^{2022}-k}\binom{3^{2022}-k}{k}(-1)^{k} x^{3^{2022}-2 k}
$$

The roots of the polynomial $f^{2022}(x) / x$ are all of those of $f^{2022}(x)$ except 0 (which we are guaranteed to have from parity).

We are left to determine the coefficient of x and x^{3} in $f^{2022}(x)$ and then we can finish by Vieta's. For simplicity, let $3^{2022}=2 \alpha+1$.

The linear coefficient is

$$
c_{1}=\frac{2 \alpha+1}{\alpha+1}\binom{\alpha+1}{\alpha}(-1)^{\alpha}=(2 \alpha+1)(-1)^{\alpha}
$$

The coefficient of x^{3} is

$$
c_{3}=\frac{2 \alpha+1}{\alpha+2}\binom{\alpha+2}{\alpha-1}(-1)^{\alpha-1}=\frac{(2 \alpha+1)(\alpha+1)(\alpha)(-1)^{\alpha-1}}{6}
$$

By Vieta's, we wish to find

$$
-\frac{2 c_{3}}{c_{1}}
$$

so our desired answer is $\frac{(\alpha+1)(\alpha)}{6}$, and because $\alpha=\frac{3^{2022}-1}{2}$ we have

$$
\frac{\left(\frac{3^{2022}-1}{2}\right)\left(\frac{3^{2022}+1}{2}\right)}{6}=\frac{3^{4044}-1}{24}
$$

which gives us an answer of $3+4044+1+24=4072$.

