Time limit: 50 minutes.
Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise.
No calculators.

1. Compute

$$
\frac{5+\sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{7+\sqrt{12}}{\sqrt{3}+\sqrt{4}}+\cdots+\frac{63+\sqrt{992}}{\sqrt{31}+\sqrt{32}} .
$$

2. Find the sum of the solution(s) x to the equation

$$
\begin{equation*}
x=\sqrt{2022+\sqrt{2022+x}} . \tag{1}
\end{equation*}
$$

3. Compute $\left\lfloor\frac{1}{\frac{1}{2022}+\frac{1}{2023}+\cdots+\frac{1}{2064}}\right\rfloor$.
4. Let the roots of

$$
x^{2022}-7 x^{2021}+8 x^{2}+4 x+2
$$

be $r_{1}, r_{2}, \cdots, r_{2022}$, the roots of

$$
x^{2022}-8 x^{2021}+27 x^{2}+9 x+3
$$

be $s_{1}, s_{2}, \cdots, s_{2022}$, and the roots of

$$
x^{2022}-9 x^{2021}+64 x^{2}+16 x+4
$$

be $t_{1}, t_{2}, \cdots, t_{2022}$. Compute the value of

$$
\sum_{1 \leq i, j \leq 2022} r_{i} s_{j}+\sum_{1 \leq i, j \leq 2022} s_{i} t_{j}+\sum_{1 \leq i, j \leq 2022} t_{i} r_{j} .
$$

5. x, y, and z are real numbers such that $x y z=10$. What is the maximum possible value of $x^{3} y^{3} z^{3}-3 x^{4}-12 y^{2}-12 z^{4}$?
6. Compute

$$
\cot \left(\sum_{n=1}^{23} \cot ^{-1}\left(1+\sum_{k=1}^{n} 2 k\right)\right) .
$$

7. Let $M=\{0,1,2, \ldots, 2022\}$ and let $f: M \times M \rightarrow M$ such that for any $a, b \in M$,

$$
f(a, f(b, a))=b
$$

and $f(x, x) \neq x$ for each $x \in M$. How many possible functions f are there $(\bmod 1000)$?
8. For all positive integers $m>10^{2022}$, determine the maximum number of real solutions $x>0$ of the equation $m x=\left\lfloor x^{11 / 10}\right\rfloor$.
9. Let $P(x)=8 x^{3}+a x^{2}+b x+1$ for $a, b \in \mathbb{Z}$. It is known that P has a root $x_{0}=p+\sqrt{q}+\sqrt[3]{r}$, where $p, q, r \in \mathbb{Q}, q \geq 0$; however, P has no rational roots. Find the smallest possible value of $a+b$.
10. Let $f^{1}(x)=x^{3}-3 x$. Let $f^{n}(x)=f\left(f^{n-1}(x)\right)$. Let \mathcal{R} be the set of roots of $\frac{f^{2022}(x)}{x}$. If

$$
\sum_{r \in \mathcal{R}} \frac{1}{r^{2}}=\frac{a^{b}-c}{d}
$$

for positive integers a, b, c, d, where b is as large as possible and c and d are relatively prime, find $a+b+c+d$.

