1. Let a be the base 10 integer equivalent to 2021_{20} and let b the base 10 integer equivalent to 2021_{21}. Compute $b-a$.
Answer: 2524
Solution: Converting to base 10,

$$
\begin{aligned}
b-a & =\left(2 \cdot 21^{3}+2 \cdot 21+1\right)-\left(2 \cdot 20^{3}+2 \cdot 20+1\right) \\
& =2\left(21^{3}-20^{3}\right)+2(21-20) \\
& =2(1261)+2(1) \\
& =2524
\end{aligned}
$$

2. Let f be a function such that for any positive integer $n, f(n)$ is equal to the median of the positive factors of n. Compute the sum of all positive integers n such that $20<f(n)<21$.

Answer: 2856

Solution: Bash pairs that sum to 41 to get the solution set $\{148,310,348,390,408,414,418,420\}$ which sums to 2856 .

3 . Let k be a randomly chosen positive divisor of $20!$. What is the probability that k can be written as $a^{2}+b^{2}$ for some integers a and b ?
Answer: $\frac{5}{54}$
Solution: The choice k can be written as the sum of two squares if and only if every prime $p \equiv 3(\bmod 4)$ appears to an even power in the prime factorization of k. The primes $p \leq 20$ with $p \equiv 3(\bmod 4)$ are $3,7,11$, and 19 . Also, $20!=3^{8} \cdot 7^{2} \cdot 11^{1} \cdot 19^{1} \cdot k$ where k is not divisible by any of these primes. Therefore, a randomly positive divisor of 20 ! has prime factorization $3^{a} \cdot 7^{b} \cdot 11^{c} \cdot 19^{d} \cdot l$ where l is not divisible by any of these primes, $a \in[0,8], a \in[0,2], a \in[0,1]$, $a \in[0,1]$. Furthermore a, b, c, and d take on the possible values with equally likelihood and independently of each other. It suffices to compute the probability that a, b, c, and d are all even which is $\left(\frac{5}{9}\right)\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{5}{54}$.

