1. For some positive integer $n, 2021-2\left(5^{n}\right)$ can be expressed as the sum and difference of distinct integer powers of 5 . Compute 5^{n}.
Answer: 625
Solution: Since $2021=31041_{5}=31101_{5}-10_{5}$, it follows that $2021=3\left(5^{4}\right)+5^{3}+5^{2}-5^{1}+5^{0}$. Therefore, $2021-2\left(5^{4}\right)=5^{4}+5^{3}+5^{2}-5^{1}+5^{0}$ can be expressed as the sum and difference of distinct powers of 5 . Therefore, $5^{n}=5^{4}=625$.
2. Find the smallest integer $n \geq 2021$ such that $30 n^{3}+143 n^{2}+117 n-56$ is divisible by 13 .

Answer: 2024

Solution 1: Since $30 n^{3}+143 n^{2}+117 n-56 \equiv 4 n^{3}+9 \bmod 13$, it follows that it is divisible by 13 exactly when $n^{3} \equiv 1 \bmod 13$. Since 2 is a primitive root of $13, n^{3} \equiv 1 \bmod 13$ when $n \equiv 2^{4}, 2^{8}, 2^{12} \bmod 13$. Therefore, $30 n^{3}+143 n^{2}+117-56$ is divisible by 13 if and only if $n \equiv 3,9,1 \bmod 13$. Since $2021 \equiv 6 \bmod 13$, the smallest value of n is $2024 \equiv 9 \bmod 13$.
Solution 2: Factoring,

$$
30 n^{3}+143 n^{2}+117 n-56=(2 n+7)(3 n-1)(5 n+8)
$$

Therefore, the expression is divisible by 13 if and only if $2 n+7,3 n-1$, or $5 n+8$ is congruent to $0 \bmod 13$. Solving for each of these, we get that the expression is divisible by 13 if and only if $n \equiv 3,9,1 \bmod 13$. Since $2021 \equiv 6 \bmod 13$, the smallest value of n is $2024 \equiv 9 \bmod 13$.
3. Suppose that a positive integer n has 6 positive divisors where the $3^{r d}$ smallest is a and the $a^{\text {th }}$ smallest is $\frac{n}{3}$. Find the sum of all possible value(s) of n.
Answer: 120
Solution: Since n has 6 divisors, either $n=p^{5}$ for some prime p or $n=p^{2} q$ for some distinct primes p and q. Moreover, since $\frac{n}{3}$ is a divisor of n, it follows that 3 must be a divisor of n. However, since the only divisors of n that can be greater than $\frac{n}{3}$ are $\frac{n}{2}$ and n, it follows that a must be equal to 4 or 5 . Since $a \neq 3$ is also a divisor of n, it follows that $n=p^{2} q$ for some distinct primes p and q so the only possible values of n are 12,45 , and 75 . Of these values, we see that only $n=45$ and $n=75$ satisfy the conditions:

$$
\begin{aligned}
& 1,2,3,4,6,12 \\
& 1,3,5,9,15,45 \\
& 1,3,5,15,25,75
\end{aligned}
$$

Therefore, the sum of all possible values of n is $45+75=120$.
4. A positive integer n has 4 positive divisors such that the sum of its divisors is $\sigma(n)=2112$. Given that the number of positive integers less than and relative prime to n is $\phi(n)=1932$, find the sum of the proper divisors of n.
Answer: 91
Solution 1: Since n has four divisors, either $n=p^{3}$ for some prime p or $n=p q$ for some distinct primes p and q. Suppose that $n=p^{3}$ for some prime p. Then

$$
11^{3}=1131<1932=\phi(n)<n=p^{3}<\sigma(n)=2112<2197=13^{3}
$$

implies that $11<p<13$, which cannot be true, so $n \neq p^{3}$ for any prime p.

Therefore, $n=p q$ for some distinct primes p and q. In this case, we have that $\sigma(n)=(p+1)(q+$ $1)=p q+(p+q)+1$ and $\phi(n)=(p-1)(q-1)=p q-(p+q)+1$. Therefore, the sum of the proper divisors of n is equal to

$$
p+q+1=\frac{\sigma(n)-\phi(n)}{2}+1=\frac{2112-1932}{2}+1=91
$$

Solution 2: Observe that $n=2021=43(47)$. The sum of the proper divisors of n is $1+43+47=$ 91 .
5. $15380-n^{2}$ is a perfect square for exactly four distinct positive integers. Given that $13^{2}+37^{2}=$ 1538 , compute the sum of these four possible values of n.

Answer: 300

Solution: Observe that for any c that $(x+c y)^{2}+(c x-y)^{2}=(y+c x)^{2}+(c y-x)^{2}=\left(c^{2}+1\right)\left(x^{2}+y^{2}\right)$. Letting $c=3$ and $(x, y)=(13,37)$, we have that $(13+3 \cdot 37)^{2}+(3 \cdot 13-37)^{2}=(37+3 \cdot 13)^{2}+$ $(3 \cdot 37-13)^{2}=\left(3^{2}+1\right)\left(13^{2}+37^{2}\right)=15380$. Therefore, the sum of the possible values of n is $|x+c y|+|c x-y|+|y+c x|+|c y-x|$. Since all of these values are positive, the sum is equal to $2 c(x+y)=2(3)(13+37)=300$.
To double-check the values of n, doing the arithmetic yields that $2^{2}+124^{2}=76^{2}+98^{2}=15380$ and $2+124+76+98=300$.
6. Find the sum of all possible values of $a b c$ where a, b, c are positive integers that satisfy

$$
\begin{aligned}
a & =\operatorname{gcd}(b, c)+3, \\
b & =\operatorname{gcd}(a, c)+3, \\
c & =\operatorname{gcd}(a, b)+3 .
\end{aligned}
$$

Answer: 436

Solution: First, note that since the gcd of any two positive integers is at least 1, it follows that $a, b, c \geq 4$. Without loss of generality, let $a \geq b \geq c \geq 4$. Then $a=\operatorname{gcd}(b, c)+3 \leq c+3$ can be at most $c+3$. We now perform casework on the value of a :
i) If $a=c$, then $a=b=c$, so $a=\operatorname{gcd}(b, c)+3=a+3$ which is a contradiction.
ii) If $a=c+1$, then $b=\operatorname{gcd}(a, c)+3=4$ so $c=4$ and $a=c+1=5$. However, this is a contradiction as $a=5 \neq 7=\operatorname{gcd}(b, c)+3$.
iii) If $a=c+2$ and a is odd, then $b=\operatorname{gcd}(a, c)+3=4$ so $c=4$ and $a=c+2=6$. However, this contradicts the assumption that a is odd. On the other hand, if a is even, then $b=\operatorname{gcd}(a, c)+3=5$. Since $b=5$ while a and c are both even, $c=4$ and $a=6$. However, this is a contradiction as $a=6 \neq 4=\operatorname{gcd}(b, c)+3$.
iv) If $a=c+3$, then $b=4$ or $b=6$. If $b=4$, then $c=4$ and $a=c+3=7$ which gives the solution $(a, b, c)=(7,4,4)$. If $b=6$ then $\operatorname{gcd}(b, c)+3=a \geq b=6 \operatorname{so} \operatorname{gcd}(b, c) \geq 3$ so the only possible value of c in this case is 6 . This gives us the only other solution $(a, b, c)=(9,6,6)$.

Therefore, since our only solutions are $(a, b, c)=(7,4,4)$ and $(a, b, c)=(9,6,6)$ (up to rearrangement), the sum of all possible values of $a b c$ is $112+324=436$.
7. Let a be the positive integer that satisfies the equation

$$
1+\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\ldots+\frac{29}{30}=\frac{a}{30!}
$$

What is the remainder when a is divided by $17 ?$

Answer: 3

Solution: We note that

$$
a=30!+\frac{30!}{2}+\frac{2 \cdot 30!}{3}+\ldots+\frac{29 \cdot 30!}{30}
$$

Since all of these terms in the sum are divisible by 17 except $\frac{16 \cdot 30 \text { ! }}{17}$, we have that

$$
\begin{aligned}
a & \equiv \frac{16 \cdot 30!}{17} \quad \bmod 17 \\
& \equiv 16 \cdot(16!) \cdot(13)!\bmod 17
\end{aligned}
$$

Wilson's theorem gives us that $16 \cdot(16!) \equiv 1 \bmod 17$ so $a \equiv 13!\bmod 17$. It also tells us that $15!\equiv 1 \bmod 17$, so $a \equiv 13!\equiv \frac{1}{14 \cdot 15} \equiv 11 \cdot 8 \equiv 3 \bmod 17$.
8. Compute the remainder when

$$
2018^{2019^{2020}}+2019^{2020^{2021}}+2020^{2020^{2020}}+2021^{2020^{2019}}+2022^{2021^{2020}}
$$

is divided by 2020 .
Answer: 2
Solution: Using binomial expansion, we have that

$$
\begin{gathered}
2018^{2019^{2020}}=(-2)^{2019^{2020}}+2019^{2020} \times(-2)^{2019^{2020}-1} \times 2020+\ldots \\
2019^{2020^{2021}}=1-2020^{2021} \times 2020+\ldots \\
2021^{2020^{2019}}=1+2020^{2019} \times 2020+\ldots \\
2022^{2021^{2020}}=(2)^{2021^{2020}}+2021^{2020} \times(2)^{2021^{2020}-1} \times 2020+\ldots
\end{gathered}
$$

where the \ldots are divisible by higher powers of 2020 . We note that $\varphi(2020)=\varphi(4) \varphi(5) \varphi(101)=$ 800. Then $\varphi(800)=\varphi(32) \varphi(25)=80$. Then $2020 \equiv 20(\bmod 80)$. Now, we consider

$$
\begin{aligned}
2019^{20} & \equiv 1-20 \times 2020+\binom{20}{2} \times 2020^{2} \quad(\bmod 800) \\
& =1-400 \quad(\bmod 800)
\end{aligned}
$$

Similarly, we consider

$$
\begin{aligned}
2021^{2020} & \equiv 1+20 \times 2020+\binom{20}{2} \times 2020^{2} \quad(\bmod 800) \\
& =1+400 \quad(\bmod 800)
\end{aligned}
$$

Then we know that

$$
(-2)^{2019^{2020}} \equiv-1 \times(2)^{1-400} \equiv(-2) \times(2)^{-400} \quad(\bmod 2020)
$$

and

$$
(2)^{2021^{2020}} \equiv 2 \times 2^{400} \quad(\bmod 2020)
$$

Then we know that $2^{400} \equiv 2^{-400}(\bmod 2020)$ since $400=800 / 2$. So, these cancel out and the total remainder is $2 \bmod 2020$.
9. Find the least positive integer k such that there exists a set of k distinct positive integers $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ that satisfy the equation

$$
\prod_{i=1}^{k}\left(1-\frac{1}{n_{i}}\right)=\frac{72}{2021}
$$

Answer: 28

Solution: Suppose that a set $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ satisfies the given equation. Without loss of generality, let $n_{1}<n_{2}<\ldots<n_{k}$. Moreover, $n_{1} \neq 1$ as $1-\frac{1}{1}=0$. Therefore, $n_{i} \geq i+1$ for $i \in\{1,2, \ldots, k\}$. Hence, we have that

$$
\frac{72}{2021}=\prod_{i=1}^{k}\left(1-\frac{1}{n_{i}}\right) \geq \prod_{i=1}^{k}\left(1-\frac{1}{i+1}\right)=\prod_{i=1}^{k} \frac{i}{i+1}=\frac{1}{k+1}
$$

Rearranging, we have that $k+1 \geq \frac{2021}{72}>28$ so $k \geq 28$.
Now consider the 28 -element set $\{2,3, \ldots, 23,25,26,27,28,43,47\}$. Since

$$
\left(\frac{1}{2}\right) \ldots\left(\frac{22}{23}\right)\left(\frac{24}{25}\right) \ldots\left(\frac{27}{28}\right)\left(\frac{42}{43}\right)\left(\frac{46}{47}\right)=\left(\frac{1}{23}\right)\left(\frac{24}{28}\right)\left(\frac{42}{43}\right)\left(\frac{46}{47}\right)=\frac{72}{2021}
$$

there exists a satisfactory set for $k=28$.
10. Compute the smallest positive integer n such that $n^{44}+1$ has at least three distinct prime factors less than 44.

Answer: 161

Solution: For any prime p to divide $n^{44}+1$, it must be that $n^{44} \equiv-1 \bmod p$, which implies that $n^{88} \equiv 1 \bmod p$. Therefore, for any prime $p>2,-1 \not \equiv 1 \bmod p$ so $\operatorname{ord}_{p}(n) \nmid 44$. Similarly, for any prime p, it follows that $\operatorname{ord}_{p}(n) \mid 88$. Together, this implies that $8 \mid \operatorname{ord}_{p}(n)$ for any prime $p>2$. However, since $\operatorname{ord}_{p}(n) \mid p-1$, it follows that $8 \mid p-1$ or equivalently, that $p \equiv 1 \bmod 8$. Since the only primes less than 44 that satisfy this condition are 17 and 41 , three distinct prime factors must be 2,17 , and 41 .
For $p=2$, it follows that $n^{44}+1 \equiv-1 \bmod 2$ exactly when $n \equiv 1 \bmod 2$, which is the same as n being odd.
For any primitive root g of modulo $p=17$, it follows that $n^{44}+1 \equiv 0 \bmod 17$ exactly when n $\bmod 17$ is equivalent to either g^{2}, g^{6}, g^{10}, or g^{14}. Since 2 is a solution as $2^{44}+1=\left(2^{4}\right)^{11}+1 \equiv$ $(-1)^{11}+1 \equiv 0 \bmod 17$, we know there is (at least) one g such that $g^{2} \equiv 2 \bmod 17$. Substituting for g^{2}, it follows that $n \bmod 17$ must be equivalent to either $2,2^{3},-2$, or -2^{3} so $n \equiv 2,8,9,15$ $\bmod 17$.

Similarly, for any primitive root g of $p=41$, it follows that $n^{44}+1 \equiv 0 \bmod 41$ exactly when n $\bmod 41$ is equivalent to either g^{5}, g^{15}, g^{25}, or g^{35}. Since 3 is a solution as $3^{44}+1=\left(3^{4}\right)^{11}+1 \equiv$ $(-1)^{11}+1 \equiv 0 \bmod 41$, we know there is (at least) one g such that $g^{5} \equiv 3 \bmod 41$. Substituting for g^{5}, it follows that $n \bmod 41$ must be equivalent to either $3,3^{3},-3$, or -3^{3} so $n \equiv 3,14,27,38$ $\bmod 41$.

By CRT, we get the following table for each of the possible cases in mod 17 and 41:

$\bmod 697$	$2 \bmod 17$	$8 \bmod 17$	$9 \bmod 17$	$15 \bmod 17$
$3 \bmod 41$	495	331	536	372
$14 \bmod 41$	342	178	383	219
$27 \bmod 41$	478	314	519	355
$38 \bmod 41$	325	161	366	202

Therefore, the smallest solution is the smallest odd number in the table $n=161$.

