1. For some positive integer n, $2021 - 2(5^n)$ can be expressed as the sum and difference of distinct integer powers of 5. Compute 5^n .

Answer: 625

Solution: Since $2021 = 31041_5 = 31101_5 - 10_5$, it follows that $2021 = 3(5^4) + 5^3 + 5^2 - 5^1 + 5^0$. Therefore, $2021 - 2(5^4) = 5^4 + 5^3 + 5^2 - 5^1 + 5^0$ can be expressed as the sum and difference of distinct powers of 5. Therefore, $5^n = 5^4 = 625$.

2. Find the smallest integer $n \ge 2021$ such that $30n^3 + 143n^2 + 117n - 56$ is divisible by 13.

Answer: 2024

Solution 1: Since $30n^3 + 143n^2 + 117n - 56 \equiv 4n^3 + 9 \mod 13$, it follows that it is divisible by 13 exactly when $n^3 \equiv 1 \mod 13$. Since 2 is a primitive root of 13, $n^3 \equiv 1 \mod 13$ when $n \equiv 2^4, 2^8, 2^{12} \mod 13$. Therefore, $30n^3 + 143n^2 + 117 - 56$ is divisible by 13 if and only if $n \equiv 3, 9, 1 \mod 13$. Since $2021 \equiv 6 \mod 13$, the smallest value of n is $2024 \equiv 9 \mod 13$.

Solution 2: Factoring,

$$30n^3 + 143n^2 + 117n - 56 = (2n+7)(3n-1)(5n+8).$$

Therefore, the expression is divisible by 13 if and only if 2n + 7, 3n - 1, or 5n + 8 is congruent to 0 mod 13. Solving for each of these, we get that the expression is divisible by 13 if and only if $n \equiv 3, 9, 1 \mod 13$. Since $2021 \equiv 6 \mod 13$, the smallest value of n is $\boxed{2024} \equiv 9 \mod 13$.

3. Suppose that a positive integer n has 6 positive divisors where the 3^{rd} smallest is a and the a^{th} smallest is $\frac{n}{3}$. Find the sum of all possible value(s) of n.

Answer: 120

Solution: Since *n* has 6 divisors, either $n = p^5$ for some prime *p* or $n = p^2 q$ for some distinct primes *p* and *q*. Moreover, since $\frac{n}{3}$ is a divisor of *n*, it follows that 3 must be a divisor of *n*. However, since the only divisors of *n* that can be greater than $\frac{n}{3}$ are $\frac{n}{2}$ and *n*, it follows that *a* must be equal to 4 or 5. Since $a \neq 3$ is also a divisor of *n*, it follows that $n = p^2 q$ for some distinct primes *p* and *q* so the only possible values of *n* are 12, 45, and 75. Of these values, we see that only n = 45 and n = 75 satisfy the conditions:

$$\begin{array}{c} 1,2,3,4,6,12\\ 1,3,5,9,15,45\\ 1,3,5,15,25,75\end{array}$$

Therefore, the sum of all possible values of n is 45 + 75 = 120.

4. A positive integer n has 4 positive divisors such that the sum of its divisors is $\sigma(n) = 2112$. Given that the number of positive integers less than and relative prime to n is $\phi(n) = 1932$, find the sum of the proper divisors of n.

Answer: 91

Solution 1: Since *n* has four divisors, either $n = p^3$ for some prime *p* or n = pq for some distinct primes *p* and *q*. Suppose that $n = p^3$ for some prime *p*. Then

$$11^3 = 1131 < 1932 = \phi(n) < n = p^3 < \sigma(n) = 2112 < 2197 = 13^3$$

implies that $11 , which cannot be true, so <math>n \neq p^3$ for any prime p.

Therefore, n = pq for some distinct primes p and q. In this case, we have that $\sigma(n) = (p+1)(q+1) = pq + (p+q) + 1$ and $\phi(n) = (p-1)(q-1) = pq - (p+q) + 1$. Therefore, the sum of the proper divisors of n is equal to

$$p + q + 1 = \frac{\sigma(n) - \phi(n)}{2} + 1 = \frac{2112 - 1932}{2} + 1 = \boxed{91}.$$

Solution 2: Observe that n = 2021 = 43(47). The sum of the proper divisors of n is 1+43+47 = 91.

5. $15380 - n^2$ is a perfect square for exactly four distinct positive integers. Given that $13^2 + 37^2 = 1538$, compute the sum of these four possible values of n.

Answer: 300

Solution: Observe that for any c that $(x+cy)^2 + (cx-y)^2 = (y+cx)^2 + (cy-x)^2 = (c^2+1)(x^2+y^2)$. Letting c = 3 and (x, y) = (13, 37), we have that $(13 + 3 \cdot 37)^2 + (3 \cdot 13 - 37)^2 = (37 + 3 \cdot 13)^2 + (3 \cdot 37 - 13)^2 = (3^2 + 1)(13^2 + 37^2) = 15380$. Therefore, the sum of the possible values of n is |x + cy| + |cx - y| + |y + cx| + |cy - x|. Since all of these values are positive, the sum is equal to 2c(x + y) = 2(3)(13 + 37) = [300].

To double-check the values of *n*, doing the arithmetic yields that $2^2 + 124^2 = 76^2 + 98^2 = 15380$ and 2 + 124 + 76 + 98 = 300.

6. Find the sum of all possible values of abc where a, b, c are positive integers that satisfy

$$a = \gcd(b, c) + 3,$$

$$b = \gcd(a, c) + 3,$$

$$c = \gcd(a, b) + 3.$$

Answer: 436

Solution: First, note that since the gcd of any two positive integers is at least 1, it follows that $a, b, c \ge 4$. Without loss of generality, let $a \ge b \ge c \ge 4$. Then $a = \text{gcd}(b, c) + 3 \le c + 3$ can be at most c + 3. We now perform casework on the value of a:

- i) If a = c, then a = b = c, so a = gcd(b, c) + 3 = a + 3 which is a contradiction.
- ii) If a = c + 1, then b = gcd(a, c) + 3 = 4 so c = 4 and a = c + 1 = 5. However, this is a contradiction as $a = 5 \neq 7 = \text{gcd}(b, c) + 3$.
- iii) If a = c + 2 and a is odd, then b = gcd(a, c) + 3 = 4 so c = 4 and a = c + 2 = 6. However, this contradicts the assumption that a is odd. On the other hand, if a is even, then b = gcd(a, c) + 3 = 5. Since b = 5 while a and c are both even, c = 4 and a = 6. However, this is a contradiction as $a = 6 \neq 4 = gcd(b, c) + 3$.
- iv) If a = c + 3, then b = 4 or b = 6. If b = 4, then c = 4 and a = c + 3 = 7 which gives the solution (a, b, c) = (7, 4, 4). If b = 6 then $gcd(b, c) + 3 = a \ge b = 6$ so $gcd(b, c) \ge 3$ so the only possible value of c in this case is 6. This gives us the only other solution (a, b, c) = (9, 6, 6).

Therefore, since our only solutions are (a, b, c) = (7, 4, 4) and (a, b, c) = (9, 6, 6) (up to rearrangement), the sum of all possible values of *abc* is 112 + 324 = 436.

7. Let a be the positive integer that satisfies the equation

$$1 + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \dots + \frac{29}{30} = \frac{a}{30!}.$$

What is the remainder when a is divided by 17?

Answer: 3

Solution: We note that

$$a = 30! + \frac{30!}{2} + \frac{2 \cdot 30!}{3} + \dots + \frac{29 \cdot 30!}{30}$$

Since all of these terms in the sum are divisible by 17 except $\frac{16\cdot30!}{17}$, we have that

$$a \equiv \frac{16 \cdot 30!}{17} \mod 17$$
$$\equiv 16 \cdot (16!) \cdot (13)! \mod 17$$

Wilson's theorem gives us that $16 \cdot (16!) \equiv 1 \mod 17$ so $a \equiv 13! \mod 17$. It also tells us that $15! \equiv 1 \mod 17$, so $a \equiv 13! \equiv \frac{1}{14 \cdot 15} \equiv 11 \cdot 8 \equiv \boxed{3} \mod 17$.

8. Compute the remainder when

$$2018^{2019^{2020}} + 2019^{2020^{2021}} + 2020^{2020^{2020}} + 2021^{2020^{2019}} + 2022^{2021^{2020}}$$

is divided by 2020.

Answer: 2

Solution: Using binomial expansion, we have that

$$2018^{2019^{2020}} = (-2)^{2019^{2020}} + 2019^{2020} \times (-2)^{2019^{2020}-1} \times 2020 + \dots$$
$$2019^{2020^{2021}} = 1 - 2020^{2021} \times 2020 + \dots$$

 $2021^{2020^{2019}} = 1 + 2020^{2019} \times 2020 + \dots$

$$2022^{2021^{2020}} = (2)^{2021^{2020}} + 2021^{2020} \times (2)^{2021^{2020} - 1} \times 2020 + \dots$$

where the ... are divisible by higher powers of 2020. We note that $\varphi(2020) = \varphi(4)\varphi(5)\varphi(101) =$ 800. Then $\varphi(800) = \varphi(32)\varphi(25) = 80$. Then $2020 \equiv 20 \pmod{80}$. Now, we consider

$$2019^{20} \equiv 1 - 20 \times 2020 + {\binom{20}{2}} \times 2020^2 \pmod{800}$$
$$= 1 - 400 \pmod{800}$$

Similarly, we consider

$$2021^{2020} \equiv 1 + 20 \times 2020 + {\binom{20}{2}} \times 2020^2 \pmod{800}$$
$$= 1 + 400 \pmod{800}$$

Then we know that

$$(-2)^{2019^{2020}} \equiv -1 \times (2)^{1-400} \equiv (-2) \times (2)^{-400} \pmod{2020}$$

and

$$(2)^{2021^{2020}} \equiv 2 \times 2^{400} \pmod{2020}$$

Then we know that $2^{400} \equiv 2^{-400} \pmod{2020}$ since 400 = 800/2. So, these cancel out and the total remainder is $2 \mod 2020$.

9. Find the least positive integer k such that there exists a set of k distinct positive integers $\{n_1, n_2, \ldots, n_k\}$ that satisfy the equation

$$\prod_{i=1}^{k} \left(1 - \frac{1}{n_i} \right) = \frac{72}{2021}.$$

Answer: 28

Solution: Suppose that a set $\{n_1, n_2, \ldots, n_k\}$ satisfies the given equation. Without loss of generality, let $n_1 < n_2 < \ldots < n_k$. Moreover, $n_1 \neq 1$ as $1 - \frac{1}{1} = 0$. Therefore, $n_i \geq i + 1$ for $i \in \{1, 2, \ldots, k\}$. Hence, we have that

$$\frac{72}{2021} = \prod_{i=1}^{k} \left(1 - \frac{1}{n_i} \right) \ge \prod_{i=1}^{k} \left(1 - \frac{1}{i+1} \right) = \prod_{i=1}^{k} \frac{i}{i+1} = \frac{1}{k+1}.$$

Rearranging, we have that $k + 1 \ge \frac{2021}{72} > 28$ so $k \ge 28$.

Now consider the 28-element set $\{2, 3, \ldots, 23, 25, 26, 27, 28, 43, 47\}$. Since

$$\left(\frac{1}{2}\right)\dots\left(\frac{22}{23}\right)\left(\frac{24}{25}\right)\dots\left(\frac{27}{28}\right)\left(\frac{42}{43}\right)\left(\frac{46}{47}\right) = \left(\frac{1}{23}\right)\left(\frac{24}{28}\right)\left(\frac{42}{43}\right)\left(\frac{46}{47}\right) = \frac{72}{2021},$$

there exists a satisfactory set for k = 28.

10. Compute the smallest positive integer n such that $n^{44} + 1$ has at least three distinct prime factors less than 44.

Answer: 161

Solution: For any prime p to divide $n^{44} + 1$, it must be that $n^{44} \equiv -1 \mod p$, which implies that $n^{88} \equiv 1 \mod p$. Therefore, for any prime p > 2, $-1 \not\equiv 1 \mod p$ so $ord_p(n) \nmid 44$. Similarly, for any prime p, it follows that $ord_p(n)|88$. Together, this implies that $8|ord_p(n)|$ for any prime p > 2. However, since $ord_p(n)|p-1$, it follows that 8|p-1 or equivalently, that $p \equiv 1 \mod 8$. Since the only primes less than 44 that satisfy this condition are 17 and 41, three distinct prime factors must be 2, 17, and 41.

For p = 2, it follows that $n^{44} + 1 \equiv -1 \mod 2$ exactly when $n \equiv 1 \mod 2$, which is the same as n being odd.

For any primitive root g of modulo p = 17, it follows that $n^{44} + 1 \equiv 0 \mod 17$ exactly when $n \mod 17$ is equivalent to either g^2 , g^6 , g^{10} , or g^{14} . Since 2 is a solution as $2^{44} + 1 = (2^4)^{11} + 1 \equiv (-1)^{11} + 1 \equiv 0 \mod 17$, we know there is (at least) one g such that $g^2 \equiv 2 \mod 17$. Substituting for g^2 , it follows that $n \mod 17$ must be equivalent to either 2, 2^3 , -2, or -2^3 so $n \equiv 2, 8, 9, 15 \mod 17$.

Similarly, for any primitive root g of p = 41, it follows that $n^{44} + 1 \equiv 0 \mod 41$ exactly when $n \mod 41$ is equivalent to either g^5 , g^{15} , g^{25} , or g^{35} . Since 3 is a solution as $3^{44} + 1 = (3^4)^{11} + 1 \equiv (-1)^{11} + 1 \equiv 0 \mod 41$, we know there is (at least) one g such that $g^5 \equiv 3 \mod 41$. Substituting for g^5 , it follows that $n \mod 41$ must be equivalent to either 3, 3^3 , -3, or -3^3 so $n \equiv 3, 14, 27, 38 \mod 41$.

By CRT, we get the following table for each of the possible cases in mod 17 and 41:

mod 697	$2 \mod 17$	8 mod 17	9 mod 17	$15 \mod 17$
3 mod 41	495	331	536	372
14 mod 41	342	178	383	219
$\boxed{27 \mod 41}$	478	314	519	355
38 mod 41	325	161	366	202

Therefore, the smallest solution is the smallest odd number in the table n = 161.