1. A paper rectangle $A B C D$ has $A B=8$ and $B C=6$. After corner B is folded over diagonal $A C$, what is $B D$?
Answer: $\frac{14}{5}$
Solution: Use the law of cosines on $\triangle B C D$, so

$$
B D=\sqrt{B C^{2}+D C^{2}-2(B C)(D C) \cos \left(90^{\circ}-2 x\right)}
$$

where $x=\angle D C A$ and $\angle B C A=90^{\circ}-x$. Plugging in $\cos \left(90^{\circ}-2 x\right)=\sin (2 x)=\frac{24}{25}, B D=\frac{14}{5}$.
2. Let $A B C D$ be a trapezoid with bases $A B=50$ and $C D=125$, and legs $A D=45$ and $B C=60$. Find the area of the intersection between the circle centered at B with radius $B D$ and the circle centered at D with radius $B D$. Express your answer as a common fraction in simplest radical form and in terms of π.
Answer: $\frac{14,450 \pi}{3}-\frac{7,225 \sqrt{3}}{2}$
Solution: Drop the altitude from A to $C D$ and call that point E. Drop the altitude from B to $C D$ and call that point F.
Thus, $A B F E$ is a rectangle and $E F=50$. This implies that $D E+F C=C D-E F=125-50=$ 75.

Now, combine the two triangles $A E D$ and $B F C$ along $A E$ and $B F$ which is equal to the height of the trapezoid. This triangle has side lengths 45,60 and 75 which form a pythagorean triple that is a multiple of $(3-4-5)$.
The height of the trapezoid is the height of the combined triangle to the side with length 75 . $B F * 75=A E * 75=45 * 60 . A E=B F=\frac{45 * 60}{75}=36$.
Notice that triangles $A E D$ and $C F B$ are similar to the combined triangle. This implies that $A E D$ and $C F B$ have side lengths that are pythagorean triples that are multiples of $(3-4-5)$.
Using this fact, it can be found that $D E=27$ and $C F=48$ where $D E+C F=27+48=75$, as we found above.

Next, $B D$ can be found from applying the pythagorean theorem to triangle $B F D$. $B F=36$ and $D F=D E+E F=27+50=77$.
Using the pythagorean theorem: $B D=\sqrt{36^{2}+77^{2}}=\sqrt{1,296+5,929}=\sqrt{7,225}=85$.
Now that the radius has been found, the area of the intersection can be found.
The intersection will compose of two equilateral triangles with side length 85 and four pieces calculated from subtracting an equilateral triangle with side length 85 from $\frac{1}{6}$ of the area of the circle. Call the area of an equilateral triangle A and the area of a piece P.
The answer is thus, total area calculated from $2 A+4 P$.
$A=\frac{85^{2} \sqrt{3}}{4}=\frac{7,225 \sqrt{3}}{4}$.
$P=\frac{1}{6}\left(85^{2} \pi\right)-\frac{85^{2} \sqrt{3}}{4}=\frac{7,225 \pi}{6}-\frac{7,225 \sqrt{3}}{4}$
Thus, $2 A+4 P=2\left(\frac{7,225 \sqrt{3}}{4}\right)+4\left(\frac{7,225 \pi}{6}-\frac{7,225 \sqrt{3}}{4}\right)=\frac{14,450 \pi}{3}-\frac{7,225 \sqrt{3}}{2}$
3. If r is a rational number, let $f(r)=\left(\frac{1-r^{2}}{1+r^{2}}, \frac{2 r}{1+r^{2}}\right)$. Then the images of f forms a curve in the $x y$ plane. If $f(1 / 3)=p_{1}$ and $f(2)=p_{2}$, what is the distance along the curve between p_{1} and p_{2} ?

Answer: $\pi / 2$

Solution: First we note that $\frac{1-r^{2}}{1+r^{2}}+{\frac{2 r}{1+r^{2}}}^{2}=\frac{1-2 r^{2}+r^{4}+4 r^{2}}{1+r^{2}}=1$. So, the curve is the unit circle. Then $1 / 3$ maps to $(8 / 10,6 / 10)$ and 2 maps to $(-3 / 5,4 / 5)$. Thus, this is $1 / 4$ of the circumference and the distance is $\pi / 2$.
4. $\triangle A_{0} B_{0} C_{0}$ has side lengths $A_{0} B_{0}=13, B_{0} C_{0}=14$, and $C_{0} A_{0}=15 . \triangle A_{1} B_{1} C_{1}$ is inscribed in the incircle of $\triangle A_{0} B_{0} C_{0}$ such that it is similar to the first triangle. Beginning with $\triangle A_{1} B_{1} C_{1}$, the same steps are repeated to construct $\triangle A_{2} B_{2} C_{2}$, and so on infinitely many times. What is the value of $\sum_{i=0}^{\infty} A_{i} B_{i}$?
Answer: $\frac{845}{33}$
Solution: The area of a 13-14-15 triangle is 84 and its circumradius is $R=\frac{13 \cdot 14 \cdot 15}{2 \cdot 84}=\frac{65}{8}$. The semiperimeter is 21 , so its inradius is $r=\frac{84}{21}=4$. The ratio of the side lengths of $\triangle A_{i+1} B_{i+1} C_{i+1}$ to the side lengths of $\triangle A_{i} B_{i} C_{i}$ is then $\frac{r}{R}=\frac{32}{65}$. We are given that $A_{0} B_{0}=13$, so the sum is $13 \cdot \sum_{i=0}^{\infty}\left(\frac{32}{65}\right)^{i}=13 \cdot \frac{1}{1-\frac{32}{65}}=13 \cdot \frac{65}{33}=\frac{845}{33}$.
5. Let $A B C D$ be a square of side length 1 , and let E and F be on the lines $A B$ and $A D$, respectively, so that B lies between A and E, and D lies between A and F. Suppose that $\angle B C E=20^{\circ}$ and $\angle D C F=25^{\circ}$. Find the area of triangle $\triangle E A F$.

Answer: 1

Solution: Since $\triangle E A F$ is a right triangle with a right angle at A, its area is $\frac{1}{2}(A E)(A F)$. Notice that $A E=A B+B E=1+B E$, and since $\triangle E B C$ is a right triangle, we have $B E=$ $B C \tan (\angle B C E)=\tan \left(20^{\circ}\right)$, so $A E=1+\tan \left(20^{\circ}\right)$. Similarly, $A F=1+\tan \left(25^{\circ}\right)$. Thus

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(A E)(A F)=\frac{1}{2}\left(1+\tan \left(20^{\circ}\right)\right)\left(1+\tan \left(25^{\circ}\right)\right) \\
& =\frac{1}{2}\left(1+\tan \left(20^{\circ}\right)+\tan \left(25^{\circ}\right)+\tan \left(20^{\circ}\right) \tan \left(25^{\circ}\right)\right) .
\end{aligned}
$$

By the tangent addition formula, we have $\tan \left(45^{\circ}\right)=\frac{\tan \left(20^{\circ}\right)+\tan \left(25^{\circ}\right)}{1-\tan \left(20^{\circ}\right) \tan \left(25^{\circ}\right)}$, and since $\tan \left(45^{\circ}\right)=1$, it follows that $\tan \left(20^{\circ}\right)+\tan \left(25^{\circ}\right)=1-\tan \left(20^{\circ}\right) \tan \left(25^{\circ}\right)$. Thus

$$
\text { Area }=\frac{1}{2}\left(1+\left(1-\tan \left(20^{\circ}\right) \tan \left(25^{\circ}\right)\right)+\tan \left(20^{\circ}\right) \tan \left(25^{\circ}\right)\right)=1 \text {. }
$$

6. $\odot A$, centered at point A, has radius 14 and $\odot B$, centered at point B, has radius $15 . A B=13$. The circles intersect at points C and D. Let E be a point on $\odot A$, and F be the point where line $E C$ intersects $\odot B$ again. Let the midpoints of $D E$ and $D F$ be M and N, respectively. Lines $A M$ and $B N$ intersect at point G. If point E is allowed to move freely on $\odot A$, what is the radius of the locus of G ?
Answer: $\frac{65}{8}$
Solution: In $\odot A$ let minor 6.0 ptCD have measure x°, and in $\odot B$ let minor $6.0 \mathrm{pt} \overparen{\mathrm{CD}}$ have measure y°. In $\triangle D E F, \angle D E F=\frac{x}{2}{ }^{\circ}$ and $\angle D F E=\frac{y}{2}^{\circ}$, so $\angle E D F=180^{\circ}-\frac{x}{2}{ }^{\circ}-\frac{y}{2}^{\circ}$. In $\triangle A C D$, $\angle A D C=90^{\circ}-\frac{x}{2}{ }^{\circ}$, and in $\triangle B C D, \angle B D C=90^{\circ}-\frac{y^{\circ}}{}{ }^{\circ}$. So, $\angle A D B=180^{\circ}-\frac{x}{2}{ }^{\circ}-\frac{y}{2}^{\circ}=\angle E D F$. Quadrilateral $D M G N$ is cyclic since $\angle G M D+\angle G B D=90^{\circ}+90^{\circ}=180^{\circ}$, so $\angle M G N=$ $180^{\circ}-\angle M D N=180^{\circ}-\angle A D B \Rightarrow \angle A G B=180^{\circ}-\angle A D B$.

Thus, $D A G B$ is also cyclic. This means that point G always lies on the circumcircle of $\triangle A D B$. So, we need to find the circumradius of a 13-14-15 triangle. Using Heron's Formula, the area of the triangle is $\sqrt{\left(\frac{13+14+15}{2}\right)\left(\frac{-13+14+15}{2}\right)\left(\frac{13-14+15}{2}\right)\left(\frac{13+14-15}{2}\right)}=84$. The circumradius is $\frac{(A B)(A D)(B D)}{4[A B D]}=\frac{(13)(14)(15)}{4(84)}=\frac{65}{8}$.
7. An n-sided regular polygon with side length 1 is rotated by $\frac{180^{\circ}}{n}$ about its center. The intersection points of the original polygon and the rotated polygon are the vertices of a $2 n$-sided regular polygon with side length $\frac{1-\tan ^{2} 10^{\circ}}{2}$. What is the value of n ?
Answer: 9
Solution: Let us call the center of the polygons O. Consider one of the intersection points of the original polygon and the rotated polygon, which we denote I. Denote the perpendicular foot of the center of the original polygon to the side of the original polygon that I lies on M, and denote the vertex of the original polygon closest to I as N. The length of $M N$ is $\frac{1}{2}$, and $\angle M O N$ is $\frac{180^{\circ}}{n}$, so the length of $O M$ is $\frac{1 / 2}{\tan \frac{180^{\circ}}{n}}$. Also we have that $\angle M O I$ is $\frac{90^{\circ}}{n}$, so the length of $M I$ is $O M \tan \frac{90^{\circ}}{n}=\frac{\frac{1}{2} \tan \frac{90^{\circ}}{n}}{\tan \frac{180^{\circ}}{n}}$. Using the double angle formula, we have $\frac{180^{\circ}}{n}=\frac{2 \tan \frac{90^{\circ}}{n}}{1-\tan ^{2} \frac{90^{\circ}}{n}}$, so $\frac{\frac{1}{2} \tan \frac{90^{\circ}}{n}}{\tan \frac{180^{\circ}}{n}}=\frac{1-\tan ^{2} \frac{90^{\circ}}{n}}{4}$. Note that the side length of the $2 n$-sided polygon is $2 M I$, so we get $\frac{1-\tan ^{2} \frac{90}{n}{ }^{\circ}}{2}$, which means that n should be 9 .
8. In triangle $\triangle A B C, A B=5, B C=7$, and $C A=8$. Let E and F be the feet of the altitudes from B and C, respectively, and let M be the midpoint of $B C$. The area of triangle $M E F$ can be expressed as $\frac{a \sqrt{b}}{c}$ for positive integers a, b, and c such that the greatest common divisor of a and c is 1 and b is not divisible by the square of any prime. Compute $a+b+c$.

Answer: 68

Solution: We first observe that quadrilateral $E F B C$ is cyclic with circumcenter M since $\angle B E C=\angle C F B=90^{\circ}$. Thus, $M B=M F=M E=M C=B C / 2=7 / 2$ as these segments are radii of the circumscribed circle of $E F B C$, so triangles $\triangle M B F, \triangle M E C$, and $\triangle M E F$ are isosceles.
From these observations, we deduce that $\angle B F M=\angle B$ and $\angle C E M=\angle C$, so $\angle B M F=$ $180^{\circ}-2 \angle B$ and $\angle C M E=180^{\circ}-2 \angle C$. Therefore,

$$
\begin{aligned}
\angle E M F & =180^{\circ}-\left(180^{\circ}-2 \angle B+180^{\circ}-2 \angle C\right) \\
& =2(\angle B+\angle C)-180^{\circ} \\
& =2\left(180^{\circ}-\angle A\right)-180^{\circ} \\
& =180^{\circ}-2 \angle A .
\end{aligned}
$$

Now, by the Law of Cosines, we calculate

$$
\cos A=\frac{A B^{2}+A C^{2}-B C^{2}}{2(A B)(A C)}=\frac{5^{2}+7^{2}-8^{2}}{2(5)(8)}=\frac{25+64-49}{80}=\frac{40}{80}=\frac{1}{2},
$$

so $\angle A=60^{\circ}$ and $\angle E M F=180^{\circ}-2\left(60^{\circ}\right)=180^{\circ}-120^{\circ}=60^{\circ}$ and $\triangle M E F$ is, in fact, equilateral, with $M E=E F=F M=\frac{7}{2}$. Hence,

$$
[M E F]=\frac{\left(\frac{7}{2}\right)^{2} \sqrt{3}}{4}=\frac{49 \sqrt{3}}{16}
$$

so $a+b+c=49+3+16=68$.
9. Rectangle $A B C D$ has an area of 30 . Four circles of radius $r_{1}=2, r_{2}=3, r_{3}=5$, and $r_{4}=4$ are centered on the four vertices A, B, C, and D respectively. Two pairs of external tangents are drawn for the circles at A and C and for the circles at B and D. These four tangents intersect to form a quadrilateral $W X Y Z$ where $\overline{W X}$ and $\overline{Y Z}$ lie on the tangents through the circles on A and C. If $\overline{W X}+\overline{Y Z}=20$, find the area of quadrilateral $W X Y Z$.

Answer: 70
Solution: We claim that $W X Y Z$ is a circumscribed quadrilateral, or a tangential quadrilateral. To show this, note that the center of the rectangle is equidistant from each pair of external tangents with distance $\frac{r+R}{2}$ where r and R are the radii of opposing circles. Since $r_{1}+r_{3}=r_{2}+r_{4}$, the center of the rectangle is equidistant from all four tangents. Therefore, a circle of radius $\frac{r_{1}+r_{3}}{2}=\frac{7}{2}$ can be inscribed in $W X Y Z$.
The Pitot Theorem states that $W X+Y Z=X Y+Z W$ for any circumscribed quadrilateral. Thus, the perimeter of $W X Y Z$ is $20+20=40$. It is not difficult to see that the area of a circumscribed quadrilateral is just $s r$ where s is the semiperimeter and r is the radius of the inscribed circle. Our answer is then $\frac{40}{2} \cdot \frac{7}{2}=70$.
Note that the area of $A B C D$ was only invoked so that there existed a quadrilateral $W X Y Z$ with $\overline{W X}+\overline{Y Z}=20$.
10. In acute $\triangle A B C$, let points D, E, and F be the feet of the altitudes of the triangle from A, B, and C, respectively. The area of $\triangle A E F$ is 1 , the area of $\triangle C D E$ is 2 , and the area of $\triangle B F D$ is $2-\sqrt{3}$. What is the area of $\triangle D E F ?$
Answer: $\sqrt{3}-1$
Solution: In right $\triangle B E A$, we have $A E=A B \cos (\angle A)$, and in right $\triangle C F A$, we have $A F=$ $A C \cos (\angle A)$. So, $\triangle A E F \sim \triangle A B C$ by SAS similarity. It follows that $E F=B C \cos (\angle A)$. Similarly, $\triangle D B F \sim \triangle A B C$ and $\triangle D E C \sim \triangle A B C$. Also, $D F=A C \cos (\angle B)$ and $D E=$ $A B \cos (\angle C)$.

From the similar triangles, $\angle A F E=\angle C$ and $\angle B F D=\angle C$, so $\angle E F D=180^{\circ}-2 \angle C$. Using the law of sines,

$$
\begin{aligned}
& {[D E F]=\frac{1}{2}(F D)(F E) \sin (\angle E F D)} \\
& =\frac{1}{2}(A C \cos (\angle B))(B C \cos (\angle A)) \sin \left(180^{\circ}-2 \angle C\right) \\
& =\frac{1}{2}(A C) \cos (\angle B)(B C) \cos (\angle A) \sin (2 \angle C) \\
& =(A C) \cos (\angle B)(B C) \cos (\angle A) \sin (\angle C) \cos (\angle C) \\
& =2\left(\frac{1}{2}(A C)(B C) \sin (\angle C)\right) \cos (\angle A) \cos (\angle B) \cos (\angle C) \\
& =2[A B C] \cos (\angle A) \cos (\angle B) \cos (\angle C)
\end{aligned}
$$

Also from the similar triangles, $[A E F]=[A B C] \cos ^{2}(\angle A),[D B F]=[A B C] \cos ^{2}(\angle B)$, and $[D E C]=[A B C] \cos ^{2}(\angle C)$.

Now we have
$2[A B C] \cos (\angle A) \cos (\angle B) \cos (\angle C)$
$=[D E F]=[A B C]-[A E F]-[D B F]-[D E C]$
$=[A B C]-5+\sqrt{3}$
and
$[A B C] \cos ^{2}(\angle A)[A B C] \cos ^{2}(\angle B)[A B C] \cos ^{2}(\angle C)$
$=[A E F][D B F][D E C]$
$=4-2 \sqrt{3}$.
Let $[A B C]=x$ and $\cos (\angle A) \cos (\angle B) \cos (\angle C)=y$. Our two equations are $2 x y=x-5+\sqrt{3}$ and $x^{3} y^{2}=4-2 \sqrt{3}$. From the first equation, $y=\frac{x-5+\sqrt{3}}{2 x}$. Substituting this into the second equation and simplifying gives

$$
x(x-5+\sqrt{3})^{2}=16-8 \sqrt{3}
$$

Notice that $16-8 \sqrt{3}=4(4-2 \sqrt{3})=4(\sqrt{3}-1)^{2}$. So, $x=4$ is a solution to the equation. If we write the equation as a cubic and factor out $(x-4)$, we see that 4 is the only solution that is greater than $[A E F]+[D B F]+[D E C]=5-\sqrt{3}$. Thus, we have $[A B C]=4$. The area of $\triangle D E F$ is $4-1-2-(2-\sqrt{3})=\sqrt{3}-1$.

