1. The values E, R, I, C (not necessarily distinct) are chosen such that $E \cdot R \cdot I \cdot C=1600$. How many quadruples (E, R, I, C) exist?

Answer: 840

Solution: Consider how we can distribute powers of 2,5 to each of the four values; these powers can be independently assigned. Hence, the problem is equivalent to computing the number of ways to distribute 2^{6} to each of the four values, and then computing the number of ways to distribute 5^{2} to each of the four values.
To distribute the powers of 2 , we observe that this is equivalent to distributing 6 identical balls to 4 indistinguishable urns, which is equivalent to placing 3 dividers between 6 items. There are hence $\binom{9}{3}=84$ ways of distributing the powers of 2 . Similarly, there are $\binom{5}{3}=10$ ways of distributing the powers of 5 . Hence, there are a total of $84 \cdot 10=840$ ways of distributing the factors between E, R, I, C.
2. Three spheres are centered at the vertices of a triangle in the horizontal plane and are tangent to each other. The triangle formed by the uppermost points of the spheres has side lengths 10,26 , and $2 \sqrt{145}$. What is the area of the triangle whose vertices are at the centers of the spheres?

Answer: 5 $\sqrt{119}$

Solution: The line segment connecting the uppermost points of two spheres with radii r_{1} and r_{2}, where $r_{1}>r_{2}$, is the hypotenuse of a right triangle with legs of length $r_{1}-r 2$ and $r_{1}+r_{2}$. So, the length of such a line segment is $\sqrt{\left(r_{1}-r_{2}\right)^{2}+\left(r_{1}+r_{2}\right)^{2}}=\sqrt{2 r_{1}^{2}+2 r_{2}^{2}}$. We can set up a system of equations to solve for the radii of the spheres.

$$
\begin{aligned}
& 2 r_{1}^{2}+2 r_{2}^{2}=100 \\
& 2 r_{2}^{2}+2 r_{3}^{2}=676 \\
& 2 r_{2}^{3}+2 r_{1}^{2}=580
\end{aligned}
$$

The solution to this system is $r_{1}=1, r_{2}=7$, and $r_{3}=17$. The triangle whose vertices are the centers of the spheres simply has side lengths of $r_{1}+r_{2}, r_{2}+r_{3}$, and $r_{3}+r_{1}$, which are equal to 8,24 , and 18 . We can find the area of this triangle using Heron's Formula: $\sqrt{\frac{8+18+24}{2} \cdot \frac{-8+18+24}{2} \cdot \frac{8-18+24}{2} \cdot \frac{8+18-24}{2}}=5 \sqrt{119}$.
3. Let A be the number of positive integers less than 2019 where x^{2020} has last digit 1 . Let B be the number of positive integers less than 2019 where x^{2019} has last digit 6 . What is $A-B$?

Answer: 602
Solution: We will compute A and B with Fermat's little theorem. Note that $\varphi(10)=4$. So, if $\operatorname{gcd}(x, 10)=1$ then $x^{2020} \equiv 1 \bmod 10$. So, this is equivalent to finding the last digits $1,3,7,9$. So, there are $A=803$.
Now if $\operatorname{gcd}(x, 10) \neq 1$, then we have $x^{2017} \equiv x \bmod 10$. Hence, we need to figure out when $x^{3} \equiv 6 \bmod 10$ which occurs when $x \equiv 6 \bmod 10$. So, $B=201$. Hence $A-B=602$.

