1. Find all integer solutions to

$$
\frac{1}{\log _{8} n}+\frac{1}{\log _{n} \frac{1}{4}}=-\frac{5}{2}
$$

Answer: 64

Solution: Applying $\log _{a} b=\frac{\log _{c} b}{\log _{c} a}$ with $c=2$ on both fractions, this becomes:

$$
\frac{\log _{2} 8}{\log _{2} n}+\frac{\log _{2} n}{\log _{2} \frac{1}{4}}=-\frac{5}{2}
$$

Substituting $x=\log _{2} n$ and evaluating $\log _{2} 8=3$ and $\log _{2} \frac{1}{4}=-2$, this becomes:

$$
\frac{3}{x}+\frac{x}{-2}=-\frac{5}{2}
$$

Multiplying both sides by $-2 x$ yields $-6+x^{2}=5 x$, which factors into $(x-6)(x+1)=0$. This quadratic has solutions $x=6$ and $x=-1$. When $x=-1$, we have $\log _{2} n=-1 \Longrightarrow n=\frac{1}{2}$, which is not an integer. When $x=6$, we have $\log _{2} n=6 \Longrightarrow n=64$.
2. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection such that for all a, either $a=f(a)^{2}$ or $f(a)=a^{2}$. For how many numbers less than 40 is $f(a) \neq a^{2}$?
Answer: 4
Solution: We start by figuring out the pattern. We can see that $f(0)=0$ and $f(1)=1$. Then $f(2)=4$ and $f(3)=4$. Then we can see that $f(4)=2$ or else no other number satisfies $f(a)=2$ and this is a bijection. Similarly $f(9)=3$. Then $f(16)=16^{2}$ since $f(2)=4$ and we have a bijection. So, we can see that the only numbers where $f(a) \neq a^{2}$ are $4,9,25,36$. So, there are 4 numbers.
3. Let x be a real number satisfying the equation $x^{2}-3 x+1=0$. Then $x^{16}-k x^{8}+1=0$ for some constant k. Compute k.
Answer: 2207.
Solution: Rearrange the given quadratic equation to $x+\frac{1}{x}=3$. Letting $P_{n}(x)=x^{n}+\frac{1}{x^{n}}$, it is easy to derive the recursive formula

$$
P_{2 n}(x)=P_{n}(x)^{2}-2 .
$$

We know that $P_{1}(x)=3$, so we can apply the recursion to obtain:

$$
\begin{aligned}
& P_{2}(x)=P_{1}(x)^{2}-2=7, \\
& P_{4}(x)=P_{2}(x)^{2}-2=47, \\
& P_{8}(x)=P_{4}(x)^{2}-2=2207 .
\end{aligned}
$$

Hence, $x^{8}+\frac{1}{x^{8}}=2207$, and rearranging yields $x^{16}-2207 x^{8}+1=0$. Thus, $k=2207$.

