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1. A circle with radius 1 is circumscribed by a rhombus. What is the minimum possible area of
this rhombus?

Answer: 4

Solution: Work with coordinate axes. Define the unit circle to be x2 + y2 = 1. An arbitrary
rhombus circumscribing a circle with radius 1 will be tangent at four total points, two at x0 > 0
and two at −x0. Then A = 2 csc θ sec θ = 4 1

2 sin θ ≤ 4, so the minimum value of A is 4.

2. Let 4ABC be a right triangle with ∠ABC = 90◦. Let the circle with diameter BC intersect
AC at D. Let the tangent to this circle at D intersect AB at E. What is the value of AE

BE ?

Answer: 1

Solution: Let O be the center of the circle with diameter BC. Then OC = OD, so 4COD
is isosceles with ∠ODC = ∠OCD. Since OB ⊥ AB, AB is tangent to the circle so ∠EBD =
∠OCD. Also, ED is a tangent so ∠EDO = 90◦. But ∠EBO = 90◦, so EDOB is cyclic. It
follows that ∠EOD = ∠EBD = ∠OCD = ∠ODC. This implies that OE||AC. Since O is the

midpoint of BC, E must be the midpoint of AB. Therefore,
AE

BE
= 1 .

3. Square ABCD has side length 4. Points P and Q are located on sides BC and CD, respectively,
such that BP = DQ = 1. Let AQ intersect DP at point X. Compute the area of triangle PQX.

Answer: 45
38

Solution: Notice that the desired area is [PQD]− [QDX]. By the standard area of a triangle
formula, [PQD] = 1

2 · 1 · 3 = 3
2 . Let ∠QDX = ∠CDP = θ. Since triangle PCD is a 3 − 4 − 5

right triangle, we have sin θ = 3
5 and cos θ = 4

5 . Now by the sine area formula, [QDA] =
2 = [QDX] + [XDA] = 1

2 · DX · (sin θ + 4 cos θ), so solving for DX gives DX = 20
19 . Thus

[QDX] = 1
2 · 1 ·

20
19 ·

3
5 = 6

19 . Our answer is 3
2 −

6
19 =

45

38
.

4. Let ABCD be a quadrilateral such that AB = BC = 13, CD = DA = 15 and AC = 24. Let the
midpoint of AC be E. What is the area of the quadrilateral formed by connecting the incenters
of ABE, BCE, CDE, and DAE?

Answer: 25

Solution: Since E is the midpoint of AC,AE = CE = 12. Also, from AB = BC and CD = DA,
we see that ABCD is a kite and AC⊥BD. By the Pythagorean Theorem on the four right
triangles, we find that AE = 5 and DE = 9.

Let W , X, Y , and Z be the incenters of4ABE, 4BCE, 4CDE and4DAE respectively. Note
that WX||AC and Y Z||AC and by symmetry, WZ = XY , so WXY Z is an isosceles trapezoid.
The semiperimeter of 4ABE is 5+12+13

2 = 15, so the inradius is 15 − 13 = 2. Similarly, we
can compute that the inradius of 4CDE is 9+12+15

2 − 15 = 3. It follows that WX = 2(2) = 4
and Y Z = 2(3) = 6. Drawing perpendiculars from W to AC and Z to AC, we see that these
perpdiculars are exactly the inradii of 4ABE and 4DAE respectively, so the height of the
trapezoid is 2 + 3 = 5. Thus, the area of WXY Z is 10(5)

2 = 25 .

5. Find the smallest possible number of edges in a convex polyhedron that has an odd number of
edges in total has an even number of edges on each face.

Answer: 19
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Solution: Because each edge is part of two distinct faces, we can think of a face with 2k edges
as contributing k edges to the total edge count of the polyhedron. Then in order for the total
edge count to be odd, we see that there must be an odd number of faces that have 2 (mod 4)
edges.

Since our goal is to minimize the number of edges, note that the smallest possible 2 (mod 4)
face is a hexagon. Let us attempt to construct an example starting with a single hexagon as the
only 2 (mod 4) face. This necessitates having at least six other faces – one for each edge of the
hexagon. Since all must be 0 (mod 4) faces, our best bet is to make them all quadrilaterals. In
order to minimize the number of loose edges, we make every two quadrilaterals that are adjacent
along the hexagon share an edge. We now have six loose edges left to cover. Note that we can
do this with two more quadrilaterals. The resulting polyhedron has 19 edges in total, with one
hexagonal face and eight quadrilateral faces:

We now claim this is the minimum possible number of edges for such a polyhedron. Indeed, the
construction argument already explains why it is the optimal solution with exactly one hexagon
and no other 2 (mod 4) faces. Furthermore, notice that the presence of an octagon or a decagon
necessitates at least 8 other faces and thus at least 16 other edges, which already surpasses the 19
edges in our example. So we restrict our search to polyhedrons of hexagons and quadrilaterals.
In particular, the only case we have left to rule out is three or more hexagons – but introducing
three hexagons already forces at least 15 edges. One can quickly convince oneself that strictly
more than 4 additional edges are needed to close a polyhedron. (To rigorize this, we can consider
three cases: if there exists a hexagon not adjacent to the other hexagons, if the three hexagons
are pairwise adjacent but don’t share a vertex, or if all three hexagons share a vertex.) We
conclude that the answer is 19.

6. Consider triangle ABC on the coordinate plane with A = (2, 3) and C = (9613 ,
207
13 ). Let B be

the point with the smallest possible y-coordinate such that AB = 13 and BC = 15. Compute
the coordinates of the incenter of triangle ABC.

Answer: (8, 7)

Solution: First, note that

AC =

√(
96

13
− 2

)2

+

(
207

13
− 3

)2

=

√(
70

13

)2

+

(
168

13

)2

=

√(
14

13

)2

(52 + 122) = 14

so ABC is a 13-14-15 triangle. Using Heron’s Formula, we have that the area of ABC is
84. Then, if r is the inradius, 13+14+15

2 · r = 84 =⇒ r = 4. Furthermore, we can draw a
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perpendicular from B to AC to split the 13-14-15 triangle into a 5-12-13 triangle and a 9-12-15
triangle. It follows that tanBAC = 12

5 . But the slope of line AC is

168
13
70
13

=
168

70
=

12

5

so in fact side AB is parallel to the x-axis.

Let I be the incenter and let X be the point of tangency of the incircle to AB. We have that

AX = 13+14+15
2 − 15 = 6, so X = (8, 3). But IX ⊥ AB and IX = 4, so X = (8, 7) .

7. Let ABC be an acute triangle with BC = 4 and AC = 5. Let D be the midpoint of BC, E be
the foot of the altitude from B to AC, and F be the intersection of the angle bisector of ∠BCA
with segment AB. Given that AD, BE, and CF meet at a single point P , compute the area of
triangle ABC. Express your answer as a common fraction in simplest radical form.

Answer: 20
√
14/9

Solution: By the Angle Bisector Theorem, BF
AF = 4

5 . Then by Ceva’s theorem we see that
CE
AE = 4

5 , so CE = 20
9 and AE = 25

9 . By the Pythagorean theorem, BE = 8
√
14
9 , so the area of

4ABC is 1
2 · 5 ·

8
√
14
9 = 20

√
14

9 .

8. Consider an acute angled triangle4ABC with side lengths 7, 8, and 9. Let H be the orthocenter
of ABC. Let ΓA, ΓB, and ΓC be the circumcircles of 4BCH, 4CAH, and 4ABH respectively.
Find the area of the region ΓA ∪ ΓB ∪ ΓC (the set of all points contained in at least one of ΓA,
ΓB, and ΓC).

Answer: 441π
10

+ 24
√
5

Solution: Let HA be the reflection of H across side BC. Note that ∠AHAB = ∠BHHA = 90◦−
∠HBC = ∠ACB, so HA lies on Γ, the circumcircle of ABC. In other words, the circumcircle
of BHAC is precisely Γ. So ΓA – the circumcircle of BHC – is the reflection of Γ across side
BC. Similarly, ΓB and ΓC are the reflections of Γ across sides CA and AB.

Let OA, OB, and OC be the centers of ΓA, ΓB, and ΓC . We can write the area of ΓA∪ΓB∪ΓC as
the area of hexagon AOCBOACOB plus the three external circular sectors AOCB, BOAC, and
COAB. Notice that ∠AOCB+∠BOAC +∠COAB = ∠AOB+∠BOC +∠COA = 360◦, so the
sum of the areas of these three sectors is precisely twice the area of Γ. Furthermore, note that
[AOCBOACOB] = [AOCB]+[BOAC]+[COBA]+[ABC] = [AOB]+[BOC]+[COA]+[ABC] =
2[ABC].

We can compute [ABC] = 12
√

5 by Heron’s, and then the circumradius R is 7·8·9
4[ABC] = 21

√
5

10 .

Thus the area of Γ is πR2 = 441π
20 . So our final answer is 2πR2 + 2[ABC] = 441π

10 + 24
√

5.

9. Let ABC be a right triangle with hypotenuse AC. Let G be the centroid of this triangle and
suppose that we have AG2 +BG2 + CG2 = 156. Find AC2.

Answer: 234

Solution: Let AB = x and BC = y. Let D,E, F be the midpoints of BC,AC,AB respectively.
Since G is a centroid, we have AG = 2GD,BG = 2GE,CG = 2GF . Also, since ABC is a right
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triangle and E is the midpoint of AC, we must have BE = EA = EC = 1
2AC. Hence,

AG2 +BG2 + CG2 =

(
2

3
AD

)2

+

(
2

3
BE

)2

+

(
2

3
CF

)2

=
4

9

(
x2 +

(y
2

)2
+
x2 + y2

4
+ y2 +

(x
2

)2)
=

4

9

(
3x2 + 3y2

2

)
=

2

3

(
x2 + y2

)
= 156.

Therefore, AC2 = x2 + y2 = 3
2 · 156 = 234 .

10. Three circles with radii 23, 46, and 69 are tangent to each other as shown in the figure below
(figure is not drawn to scale).

Find the radius of the largest circle that can fit inside the shaded region.

Answer: 6

Solution: Let A,B,C be the center of the three circles with radii a = 23, b = 46, c = 69
respectively and let O and r be the center and the radius of the largest circle that can fit in the
shaded region. Hence, we have a triangle ABC with sides 69, 92, and 115 and a point O inside
the triangle with distances 23 + r, 46 + r, and 69 + r from A,B,C respectively.

Suppose CO intersects AB at X and let OX = x and AX = y.



SMT 2020 Geometry Test Solutions February 22, 2020

Then, by Stewart’s Theorem, we have

AO2XC = AC2OX +AX2OC − (OX)(OC)(XC),

BO2XC = BC2OX +BX2OC − (OX)(OC)(XC),

OX2AB = OA2XB +OB2XA− (XB)(XA)(BA).

Substituing in the values,

(23 + r)2(69 + r + x) = 922x+ y2(69 + r)− x(69 + r)(69 + r + x),

(46 + r)2(69 + r + x) = 1152x+ (69− y)2(69 + r)− x(69 + r)(69 + r + x),

x2(69) = (23 + r)2(69− y) + (46 + r)2(y)− (69− y)(y)(69).

Solving these equations such that r > 0 yields x = 125
6 , y = 161

6 , r = 6 .


