1. In your drawer you have two red socks and a blue sock. You randomly select socks, without replacement, from the drawer. However, every time you take a blue sock, another one magically appears in the drawer. What is the probability that you get a red pair before a blue pair?
Answer: $\frac{11}{18}$
Solution: Note that at most 3 socks will be drawn. Based on this, there are three cases where a red pair is drawn before a blue pair.
(a) Red Red: The probability of the first sock being red is $\frac{2}{3}$. After removing the red sock, the probability of the second sock being red is $\frac{1}{2}$.
(b) Red Blue Red: The probability of the first sock being red is $\frac{2}{3}$. After removing the red sock, the probability of the second sock being blue is $\frac{1}{2}$. After replacing the blue sock, the probability of the third sock being red is $\frac{1}{2}$.
(c) Blue Red Red: The probability of the first sock being blue is $\frac{1}{3}$. After replacing the blue sock, the probability of the second sock being red is $\frac{2}{3}$. After removing the red sock, the probability of the third sock being red is $\frac{1}{2}$.

Adding the probabilities over these three cases, the probability that a red pair is drawn before a blue pair is equal to $\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)+\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)=\frac{1}{3}+\frac{1}{6}+\frac{1}{9}=\frac{11}{18}$.
2. Suppose a, b, c are positive integers such that $l c m(a, b)=400, \operatorname{lcm}(b, c)=2000, l c m(c, a)=1000$, and $\operatorname{gcf}(a, b, c)=10$. Given that a is a three-digit number, what is the value of $a+b+c$?

Answer: 530

Solution: Looking at the prime factorizations $400=2^{4} \cdot 5^{2}, 2000=2^{4} \cdot 5^{3}, 1000=2^{3} \cdot 5^{3}$, consider the exponents of 2 in the prime factorizations of a, b, c. It follows that the exponent of b must be 4 and the exponents of a and c must be 1 and 3 in some order. Similarly for the exponents of 5 , the exponent of c must be 3 and the exponents of a and b must be 1 and 2 in some order. In order for a to be a three-digit number, a must equal $2^{3} \cdot 5^{2}=200$. Therefore, b must equal $2^{4} \cdot 5^{1}=80$ and c must equal $2^{1} \cdot 5^{3}=250$. Since $a=200, b=80$, and $c=250$, $a+b+c=530$.
3. Consider a 3×3 grid with the first 9 positive integers placed in the grid. Take the greatest integer in each row and let r be the smallest of those numbers. Take the smallest integer in each column and c be the greatest of those numbers. How many arrangements are there such that $r \leq c \leq 4$?

Answer: 38880

Solution: We first note that r and c are have minimum value 3. We proceed using casework. If $r=c=3$, then we need to split $1,2,3$ into different columns for $c=3$. Then they necessarily need to be in the same row for $r=3$. There are 9 places to choose where the 3 is, 2 more ways to arrange 1,2 in the row and 6 ! ways to arrange the other numbers. Thus, there are $9 \cdot 2 \cdot 6!=720 \cdot 18=12960$ arrangements.
If $r=3, c=4$. Then again $1,2,3$ need to be in the same row, forcing them to be in different columns. But we need 4 to be the smallest integer in some column, hence causing a problem. So, there are 0 arrangements.
Finally if $r=4, c=4$, we can choose 9 places for the 4 to be. Then we are forced to place two of the numbers $1,2,3$ in the row, giving us 6 ordered ways. Then the final number can not be placed in the same column as the 4 , hence there are 4 places to put it. Finally there are 5! ways
to place the final numbers. So there are $9 \cdot 6 \cdot 4 \cdot 5!=25920$.
Thus there are $12960+25920=38880$ arrangements.

