1. Compute

$$
\int_{1}^{2} \frac{x-1}{x^{2} \ln x+x} d x .
$$

Answer: $\ln \left(\frac{1}{2}+\ln 2\right)$
Solution: Notice that we can rewrite this as

$$
\int_{1}^{2} \frac{\frac{1}{x}-\frac{1}{x^{2}}}{\ln x+\frac{1}{x}} d x
$$

from which the u-substitution $u=\ln x+\frac{1}{x}$ shows that the integral is just $\ln \left(\frac{1}{x}+\ln x\right)$. We get the answer by evaluating at the appropriate endpoints.
2. Calculate

$$
\sum_{n=1}^{\infty} \frac{\sin n+\cos n}{n}
$$

Answer: $\frac{\pi-1}{2}-\frac{1}{2} \ln (2-2 \cos 1)$
Solution: Recall that power series tell us that $-\log (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n}$, and recall that we can write $\sin x$ as $\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$ and $\cos x$ as $\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$. Combining these facts, we see that the infinite sum of the cosine portion is equal to $\frac{1}{2}\left(-\ln \left(1-e^{i}\right)-\ln \left(1-e^{-i}\right)\right)=-\frac{1}{2} \ln ((1-$ $\left.\left.e^{i}\right)\left(1-e^{-i}\right)\right)=-\frac{1}{2} \ln (2-2 \cos 1)$. Similarly, we see that the sine portion of the infinite sum is $\frac{1}{2 i}\left(-\ln \left(1-e^{i}\right)+\ln \left(1-e^{-i}\right)\right)=\frac{1}{2 i} \ln \left(-e^{-i}\right)=\frac{\pi-1}{2}$. Combining these two portions gives the desired answer.
3. Let

$$
y=\sum_{n=0}^{\infty} \frac{n+x}{n!} \cdot 2^{n}
$$

describe a curve in the xy plane. Find the area under the curve from $x=0$ to $x=2020$.
Answer: 2044240e ${ }^{2}$
Solution: We note that this is the Taylor series evaluated at $z=2$ of

$$
x \sum_{n=0}^{\infty} \frac{z^{n}}{n}+\sum_{n=1}^{\infty} \frac{z^{n}}{(n-1)!}=x e^{2}+2 e^{2}=x e^{2}+2 e^{2}
$$

. So, we calculate the area:

$$
\int_{0}^{2020} x e^{2}+2 e^{2} d x=\frac{2020^{2} e^{2}}{2}+4040 e^{2}=(2040200+4040) e^{2}=2044240 e^{2}
$$

