1. If $f(x)=n x, g(x)=e^{2 x}$, and $h(x)=g(f(x))$, find n such that $h^{\prime}(0)=100$.

Answer: 50
Solution: If $f(x)=n x, g(x)=e^{2 x}$, and $h(x)=g(f(x))$, then $h(x)=e^{2(n x)}=e^{2 n x}$. The derivative of $h(x)$ is $2 n * e^{2 n x}$, by the Chain Rule. Then, plugging in 0 for x gets us $2 n=100$, so, $n=50$.
2. Farmer Joe will plant carrots to cover a rectangle in the first quadrant with a vertex at the origin and sides parallel to the x and y axes. However, he can not grow carrots on his neighbor's land. If the border between his and his neighbor's land is along the curve $y=-\ln (2 x)$, what is the maximum area of carrotland Farmer Joe can create?
Answer: $\frac{1}{2 e}$
Solution: We note that the area of carrotland is $x y=-x \ln (2 x)$. The maximum occurs when $(x y)^{\prime}=0$, or $-\ln (2 x)+-1=0$. Hence $x=e^{-1} / 2$ and $y=1$. So, the maximum area is $\frac{1}{2 e}$.
3. For all θ from 0 to 2π, Annie draws a line segment of length θ from the origin in the direction of θ radians. What is the area of the spiral swept out by the union of these line segments?
Answer: $\frac{4 \pi^{3}}{3}$
Solution: After drawing the spiral, it should become clear that we have the following calculation since our radius is θ

$$
\frac{1}{2} \int_{0}^{2 \pi} \theta^{2} d \theta=\frac{4 \pi^{3}}{3}
$$

4. The Chebyshev Polynomials are defined as

$$
T_{n}(x)=\cos \left(n \cos ^{-1}(x)\right),
$$

for $n=0,1,2, \ldots$. Compute the following infinite series:

$$
\sum_{n=1}^{\infty} \int_{-1}^{1} T_{2 n+1}(x) d x
$$

If the series diverges, your answer should be "D."
Answer: 0
Solution: We can show that the Chebyshev Polynomials are odd for odd n. Recall that for an odd function, $f(-x)=-f(x)$. So, the integral of said function over $[-1,1]$ should be 0 . Thus, the sum of those integrals should also be 0 .
5. What is

$$
(2020)^{2}+\frac{(2021)^{2}}{1!}+\frac{(2022)^{2}}{2!}+\frac{(2023)^{2}}{3!}+\frac{(2024)^{2}}{4!}+\ldots
$$

Answer: 4084442e
Solution: We start with

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Then we can do a pattern of differentiating and multiplying by x.

$$
\begin{gathered}
x^{2020} e^{x}=\sum_{n=0}^{\infty} \frac{x^{n+2020}}{n!} \\
\left(2020 x^{2019}+x^{2020}\right) e^{x}=\sum_{n=0}^{\infty} \frac{(n+2020) x^{n+2019}}{n!} \\
\left(2020 x^{2020}+x^{2021}\right) e^{x}=\sum_{n=0}^{\infty} \frac{(n+2020) x^{n+2020}}{n!} \\
\left(2020^{2} x^{2019}+4041 x^{2020}+x^{2021}\right) e^{x}=\sum_{n=0}^{\infty} \frac{(n+2020)^{2} x^{n+2019}}{n!}
\end{gathered}
$$

So, our desired sum occurs when $x=1$, and we obtain $4084442 e$.
6. Let us define the sequence $a_{n}=(-1)^{n} /(n)$. Now, we define the partial sums

$$
A_{N}=\sum_{n=1}^{N} a_{n}
$$

What is the difference

$$
\left.\sum_{N=1}^{\infty}\left(A_{N}-\lim _{M \rightarrow \infty} A_{M}\right)\right) ?
$$

Answer: $-\log (2)+1 / 2$
Solution: First we note that we are calculating the series

$$
\sum_{N=1}^{\infty} \sum_{m=N+1}^{\infty} \frac{(-1)^{m+1}}{m}=-\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(-1)^{n+m}}{n+m}
$$

Instead, we consider

$$
F(x)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(-x)^{n+m}}{n+m}
$$

Then we note that the answer should be $\lim _{x \rightarrow 1}-F(x)$. Now we can see that

$$
F^{\prime}(x)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}(-1)(-x)^{n+m-1}=\frac{x}{(1+x)^{2}}
$$

Then we can determine that

$$
F(x)=\int \frac{x}{(1+x)^{2}} d x=\log (1+x)+\frac{1}{1+x}-1
$$

(Note that $F(0)=0$ from its definition). Thus,

$$
\lim _{x \rightarrow 1}-F(x)=-\log (2)-\frac{1}{2}+1=-\log (2)+1 / 2
$$

7. Define $f_{1}(x)=x$ and for every integer $n \geq 2$, we define $f_{n}(x)=x^{f_{n-1}(x)}$. Compute

$$
\lim _{n \rightarrow \infty} \int_{e}^{2020} \frac{f_{n}^{\prime}(x)}{f_{n}(x) f_{n-1}(x) \ln x}-\frac{f_{n-1}^{\prime}(x)}{f_{n-1}(x)} d x
$$

Answer: $\ln (\ln 2020)$

Solution: It turns out that the limit is unnecessary, as we can see by induction that

$$
f_{n}^{\prime}(x)=f_{n}(x)\left(f_{n-1}^{\prime}(x) \ln x+\frac{1}{x} f_{n-1}(x)\right) .
$$

This means that the desired integral is $\int_{e}^{2020} \frac{1}{x \ln x} d x$. The anti-derivative is just $\ln (\ln x)$, so evaluating at endpoints gives $\ln (\ln 2020)$.
8. Compute

$$
\int_{0}^{\infty} \frac{d x}{x^{4}-6 x^{2}+25}
$$

Answer: $\frac{\pi}{20}$
Solution: We first factor the denominator to get

$$
\int_{0}^{\infty} \frac{d x}{x^{4}-6 x^{2}+25}=\int_{0}^{\infty} \frac{d x}{\left(x^{2}-4 x+5\right)\left(x^{2}+4 x+5\right)}
$$

We can then decompose the integral into the partial fractions

$$
\int_{0}^{\infty}\left[\frac{-x+4}{40\left(x^{2}-4 x+5\right)}+\frac{x+4}{40\left(x^{2}-4 x+5\right)}\right] d x
$$

Focusing on the first term, we notice that $\frac{d}{d x}\left(x^{2}-4 x+5\right)=2 x-4$. This suggests that we further decompose the first term into

$$
\int_{0}^{\infty}\left[\frac{-(x-2)}{40\left(x^{2}-4 x+5\right)}+\frac{2}{40\left(x^{2}-4 x+5\right)}\right] d x
$$

The first integral evaluates to $-\frac{1}{2} \ln \left(x^{2}-4 x+5\right)$. To evaluate the second integral, we complete the square in the denominator to get

$$
\int_{0}^{\infty} \frac{2 d x}{40(x-2)^{2}+40}
$$

We can then make the substitution $u=x-2$ and use the fact that $\int \frac{d x}{x^{2}+1}=\tan ^{-1}(x)$ to see that the second integral evaluates to $\frac{1}{20} \tan ^{-1}(x-2)$. Decomposing the second integral in a similar manner, we find

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{x^{4}-6 x^{2}+25}= & {\left[-\frac{1}{80} \ln \left(x^{2}-4 x+5\right)+\frac{1}{80} \ln \left(x^{2}+4 x+5\right)\right.} \\
& \left.+\frac{1}{20} \tan ^{-1}(x-2)+\frac{1}{20} \tan ^{-1}(x+2)\right]_{0}^{\infty} \\
= & {\left[\frac{1}{80} \ln \left(\frac{x^{2}-4 x+5}{x^{2}+4 x+5}\right)+\frac{1}{20}\left(\tan ^{-1}(x-2)+\tan ^{-1}(x+2)\right)\right]_{0}^{\infty} }
\end{aligned}
$$

When $x=0$, the resulting terms cancel to 0 . When $x \rightarrow \infty$, the fraction in the \ln term approaches 1 , and $\ln 1=0$. On the other hand, $\tan ^{-1}(x) \rightarrow \frac{\pi}{2}$, so our answer is $\frac{1}{20}\left(\frac{\pi}{2}+\frac{\pi}{2}\right)=$ $\frac{\pi}{20}$.
9. Define $a_{n}=\underbrace{\sqrt{2+\sqrt{2+\sqrt{2+\ldots \ldots}}}}_{\text {n square roots }}$. For example $a_{1}=\sqrt{2}$ and $a_{2}=\sqrt{2+\sqrt{2}}$. Find the value of

$$
\lim _{n \rightarrow \infty} 4^{n}\left(2-a_{n}\right)
$$

Answer: $\frac{\pi^{2}}{4}$
Solution: It is not hard to show by induction that $a_{n}=2 \cos \left(\pi / 2^{n+1}\right)$. Therefore,

$$
4^{n}\left(2-a_{n}\right)=4^{n}\left(2-\left(2-2 \frac{\left(\frac{\pi}{2^{n+1}}\right)^{2}}{2!}+2 \frac{\left(\frac{\pi}{2^{n+1}}\right)^{4}}{4!}-\ldots\right)\right)=\frac{\pi^{2}}{4}+O\left(1 / 4^{n}\right)
$$

Thus, as $n \rightarrow \infty$, the limit approaches $\frac{\pi^{2}}{4}$.
10. Let

$$
I_{m}=\int_{0}^{2 \pi} \sin (x) \sin (2 x) \cdots \sin (m x) d x
$$

Find the sum of all integers $1 \leq m \leq 100$ such that $I_{m} \neq 0$.
Answer: 1300
Solution: Analyzing the even/oddness of the function shows that odd m don't work, and analyzing $\pi-x$ vs x symmetry shows that $m \equiv 2 \bmod 4$ doesn't work. But it is not obvious why $I_{m} \neq 0$ for every $m \equiv 0 \bmod 4$. One could guess this is true and guess the corresponding answer, but we present a full proof here (and we present differently phrased reasons for why $m \not \equiv 0 \bmod 4$ fail $)$.
First, recall we can re-express $\sin (n x)$ as $\frac{1}{2 i}\left(e^{i n x}-e^{-i n x}\right)$, and note that I_{m} being nonzero means that we can ignore the coefficient of $\frac{1}{2 i}$ and simply find the m for which the following is nonzero:

$$
\int_{0}^{2 \pi}\left(e^{i x}-e^{-i x}\right)\left(e^{i 2 x}-e^{-i 2 x}\right) \cdots\left(e^{i m x}-e^{-i m x}\right) d x
$$

When we expand this product, each term contributes one exponential of the form $s_{n} e^{i x s_{n} n}$ where $s_{n} \in\{-1,+1\}$, yielding

$$
\int_{0}^{2 \pi} \sum_{s_{n} \in\{-1,+1\}} s_{1} s_{2} \ldots s_{m} \exp \left(i x \sum_{n} s_{n} n\right) d x
$$

Rearranging the sums and integrals, this becomes

$$
\sum_{s_{n} \in\{-1,+1\}} s_{1} s_{2} \ldots s_{m} \int_{0}^{2 \pi} \exp \left(i x \sum_{n} s_{n} n\right) d x
$$

Notice that if $\sum_{n} s_{n} n$ is some nonzero integer,

$$
\int_{0}^{2 \pi} \exp \left(i x \sum_{n} s_{n} n\right) d x=\frac{1}{i \sum_{n} s_{n} n}\left(\exp \left(2 \pi i \sum_{n} s_{n} n\right)-1\right)=0 .
$$

However, if $\sum_{n} s_{n} n=0$, then the integral is just $\int_{0}^{2 \pi} 1 d x=2 \pi$. Therefore, we again ignore scaling coefficients 2π, and the expression that should be nonzero is

$$
\sum_{\substack{s_{n} \in\{-1,+1\}, \sum_{n} s_{n} n=0}} s_{1} s_{2} \ldots s_{m}
$$

Now, notice that $\sum_{n} s_{n} n \equiv \sum_{n} n \equiv m(m+1) / 2 \bmod 2$. So if $\sum_{n} s_{n} n=0$, then we must have $m(m+1) \equiv 0 \bmod 4$, i.e. m is either 0 or 3 modulo 4 .
For a given tuple $S=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ such that $\sum_{n} s_{n} n=0$, let's split the indices into two sets: $P_{S}=\left\{n: s_{n}=+1\right\}$ and $N_{S}=\left\{n: s_{n}=-1\right\}$. Notice that $s_{1} s_{2} \ldots s_{m}=(-1)^{\left|N_{S}\right|}$, so the desired quantity can be written as

$$
\sum_{S}(-1)^{\left|N_{S}\right|} .
$$

If $m \equiv 3 \bmod 4$, then $\left|P_{S}\right| \equiv-\left|N_{S}\right| \bmod 2$ since $\left|P_{S}\right|+\left|N_{S}\right|=m \equiv 1 \bmod 2$. Moreover, notice that a valid S can be paired with the valid tuple $-S:=\left(-s_{1},-s_{2}, \ldots,-s_{m}\right)$, for which $N_{-S}=P_{S}$ and hence $(-1)^{\left|N_{-S}\right|}+(-1)^{\left|N_{S}\right|}=(-1)^{-\left|N_{S}\right|}+(-1)^{\left|N_{S}\right|}=0$. Clearly, every valid tuple is paired with exactly 1 distinct valid tuple, showing that the desired total sum is 0 if $m \equiv 3$ $\bmod 4$.

So assume $m=4 k$ for some positive integer k. In this case, $\left|P_{S}\right| \equiv\left|N_{S}\right| \bmod 2$, meaning that $(-1)^{\left|N_{-S}\right|}+(-1)^{\left|N_{S}\right|}=2(-1)^{\left|N_{S}\right|}$. Therefore, we can view the tuples S and $-S$ as equivalent (we refer to them jointly as $\pm S$), and we can view the tuple ($P_{ \pm S}, N_{ \pm S}$) as just a partition $\Pi_{ \pm S}$ of $\{1,2, \ldots, m\}$ into two sets. Since $\left|P_{ \pm S}\right| \equiv\left|N_{ \pm S}\right| \bmod 2$, let us define a partition $\Pi_{ \pm S}$'s parity to be equal to the parity of $\left|P_{ \pm S}\right|$.
Let O be the set of $\pm S$ with odd $\Pi_{ \pm S}$ and E be the set of $\pm S$ with even $\Pi_{ \pm S}$. These sets are clearly finite, and the desired sum is proportional to $|E|-|O|$. If the desired total sum is nonzero, then $|O| \neq|E|$. We claim that there exists a non-surjective injection from O to E, which would imply $|O|<|E|$.
Consider an element $\pm S$ of O and its partition $\Pi_{ \pm S}$ into two sets A, B such that WLOG $A=$ $\{1,2, \ldots, x\} \cup A^{\prime}$ and $B=\{x+1\} \cup B^{\prime}$ where all elements of A^{\prime} and B^{\prime} are at least $x+2$ and $x>1$. These conditions generally hold because when $m=4 k$, we know $m \geq 4$, so the partition cannot be $\{1\},\{2,3, \ldots, m\}$ (this implies the existence of $\{1,2, \ldots, x\}$ in A with $x>1$) and the partition containing 1 cannot be $\{1,2, \ldots, m\}$ (this implies that $x+1$ lies in the set without 1). Now, consider $A^{*}=\{2,3, \ldots, x-1\} \cup\{x+1\} \cup A^{\prime}$ and $B^{*}=\{1, x\} \cup B^{\prime}$. It is easy to see that since we only swapped $\{1, x\}$ with $\{x+1\}$, this is a partition that leads to a valid choice of $\pm S^{*}$. Moreover, since $\Pi_{ \pm S}$ was odd, we know $\left|B^{\prime}\right|$ is odd and hence $\left|B^{*}\right|$ is even, implying that $\pm S^{*} \in E$. Thus, we have a valid map from O to E.
It is easy to see that this is an injection, but the condition that elements of B^{\prime} are at least $x+2$ means that it is not a surjection: consider attempting to map to the element that partitions the indices into those equivalent to 0 or $3 \bmod 4$, and those equivalent to 1 or $2 \bmod 4$. For $m \geq 8$, this results in one set in the partition having $\{1,4,5,8, \ldots\}$, meaning $1, x, x+1$ are in the same
side of the partition and is hence impossible to achieve under the map, and for $m=4$, there is simply no $x+1$.
The answer is then $\sum_{k=1}^{25} 4 k=1300$.

