1. Evaluate $\sqrt{2223^{2}-8888}$.

Answer: 2221
Solution: Note that $\sqrt{2223^{2}-8888}=\sqrt{(2222+1)^{2}-8888}=\sqrt{2222^{2}+4444+1-8888}=$ $\sqrt{2222^{2}-4444+1}=\sqrt{(2222-1)^{2}}=2221$.
2. If a is the only real number that satisfies $\log _{2020} a=202020-a$ and b is the only real number that satisfies $2020^{b}=202020-b$, what is the value of $a+b$?

Answer: 202020
Solution: We have

$$
\begin{gathered}
2020^{202020-a}=a \\
2020^{b}=202020-b
\end{gathered}
$$

If $x=202020-a$, then $2020^{x}=202020-x$. Since b is the only real number that satisfies $2020^{b}=202020-b, x$ must be equal to b. Therefore, $a+b=202020$.
3. Two cars driving from city A to city B leave at the same time. The first car drives at some constant speed during the whole trip. The second car travels at a speed $12 \mathrm{~km} / \mathrm{hr}$ slower than the first car until the halfway point between city A and city B. After the halfway point, the second car travels at a constant speed of $72 \mathrm{~km} / \mathrm{hr}$. Both cars end up reaching city B at the same time. Calculate the speed of the first car in $\mathrm{km} / \mathrm{hr}$, given that it was faster than $40 \mathrm{~km} / \mathrm{hr}$.

Answer: 48

Solution: Let d be the distance between the cities and s be the speed of the first car in $\mathrm{km} / \mathrm{hrs}$. Then $\frac{d}{s}$ is the total time taken by the first car to get from city A to B. For the second car, $\frac{d / 2}{s-12}$ is the time taken to get from city A to the halfway point and $\frac{d / 2}{72}$ is the time taken to get from the halfway point to city B. Therefore,

$$
\frac{d}{s}=\frac{d / 2}{s-12}+\frac{d / 2}{72}
$$

Dividing by $d / 2$ and multiplying by the denominators,

$$
144(s-12)=72 s+s(s-12)
$$

Rearranging,

$$
s^{2}-84 s+1728=(s-36)(s-48)=0
$$

so s must be either 36 or 48 . However, given that the speed was greater than $40 \mathrm{~km} / \mathrm{hr}$, s, the speed of the first car in $\mathrm{km} / \mathrm{hrs}$, must be 48 .
4. Find the value of $b c$ such that $x^{2}-x+1$ divides $20 x^{11}+b x^{10}+c x^{9}+4$.

Answer: - 480
Solution: First we consider a polynomial $p(x)=p_{9} x^{9}+p_{8} x^{8}+\ldots+p_{0}$ such that $p(x)\left(x^{2}-x+1\right)=$ $a x^{11}+b x^{10}+c x^{9}+4$. Clearly $p_{0}=4$. Then we can deduce since $-4 x+p_{1} x=0$ that $p_{1}=4$. Then we continue to see that $p_{2} x^{2}-4 x^{2}+4 x^{2}=0$, so $p_{2}=0$. Continuing this pattern we have that $p_{3}=-4, p_{4}=-4, p_{5}=0, p_{6}=4, p_{7}=4$, and $p_{8}=0$. Then $p_{9} x^{9}+4 p_{7} x^{9}=c x^{9}$, so $p_{9}=c-4$. However, we can see that since $x^{2}-x+1$ is monic, $a=p_{9}$. So, $a=c-4$. In addition, $b=-a$. So, $b c=-480$.
5. Suppose $f(x)$ is a monic quadratic polynomial such that there exists an increasing arithmetic sequence $x_{1}<x_{2}<x_{3}<x_{4}$ where $\left|f\left(x_{1}\right)\right|=\left|f\left(x_{2}\right)\right|=\left|f\left(x_{3}\right)\right|=\left|f\left(x_{4}\right)\right|=2020$. Compute the absolute difference of the two roots of $f(x)$.
Answer: 10 $\sqrt{101}$
Solution: Suppose $f(x)=(x-h)^{2}-k$ with vertex (h, k) where k is non-negative. Since the roots of $f(x)$ are $h \pm \sqrt{k}$, the absolute difference of the two roots of $f(x)$ is $2 \sqrt{k}$. By symmetry, if $x_{2}=h-d$, then $x_{3}=h+d$, which means $x_{1}=h-3 d$ and $x_{4}=h+3 d$. Since $x_{1}<x_{2}<h$ and $f(x)$ is monic, $f\left(x_{1}\right)=f\left(x_{4}\right)$ must be positive and $f\left(x_{2}\right)=f\left(x_{3}\right)$ must be negative. Therefore, $f\left(x_{1}\right)=-f\left(x_{2}\right)=2020$. Substituting, $9 d^{2}-k=-\left(d^{2}-k\right)$, which implies $k=5 d^{2}$. Since $f\left(x_{1}\right)=9 d^{2}-k=4 d^{2}=2020$, it follows that $k=5 d^{2}=\frac{5}{4}\left(4 d^{2}\right)=\frac{5}{4}(2020)$. Therefore, the absolute difference of the roots of $f(x)$ is $2 \sqrt{k}=5 \sqrt{2020}=10 \sqrt{101}$.
6. Let $f: A \rightarrow B$ be a function from $A=\{0,1, \ldots, 8\}$ to $B=\{0,1, \ldots, 11\}$ such that the following properties hold:

$$
\begin{aligned}
f(x+y \quad \bmod 9) & \equiv f(x)+f(y) \quad \bmod 12 \\
f(x y \quad \bmod 9) & \equiv f(x) f(y) \quad \bmod 12
\end{aligned}
$$

for all $x, y \in A$. Compute the number of functions f that satisfy these conditions.
Answer: 2
Solution: Note $f(n) \equiv f(\underbrace{1+1+\ldots+1}_{n \text { times }})=n * f(1) \bmod 12$, so f can be completely determined if we know $f(1)$. In addition, $f(0)=f(0+0) \equiv f(0)+f(0) \bmod 12 \Rightarrow f(0)=0$. Now consider $f(0)=0=f(\underbrace{1+1+\ldots+1}_{9 \text { times }}) \equiv 9 f(1) \bmod 12$. Thus $f(1)$ equals 0,4 , or 8 .

If $f(1)=0$, then $f(n)=0$ for all n, which is well-defined. If $f(1)=4$, then $f(n) \equiv 4 n \bmod 12$, which is well-defined as $f(n) \equiv f(n+9)=4 n+36 \bmod 12 \equiv 4 n$, and $f(m) * f(n)=4 m * 4 n \equiv$ $4 m n \bmod 12=f(m n)$. However, if $f(1)=8, f(1)=f(1 * 1)=f(1) * f(1)=8 * 8 \not \equiv 8 \bmod 12$, so this f doesn't satisfy the second condition. So there are only 2 functions that satisfy the given properties, which are the f defined by $f(1)=0$ and $f(1)=4$.
7. Let a_{n} be a sequence where $a_{0}=\sqrt{3}, a_{1}=\sqrt{2}, a_{3}=-1$ (not a_{2}) and $a_{n}=a_{n-1} a_{n-2}-a_{n-3}$ for $n \geq 3$. Compute a_{2020}.
Answer: $-\frac{\sqrt{6}+\sqrt{2}}{2}$
Solution: First, observe that $a_{0}=2 \cos \left(30^{\circ}\right), a_{1}=2 \cos \left(45^{\circ}\right), a_{2}=\frac{\sqrt{6}-\sqrt{2}}{2}=2 \cos \left(75^{\circ}\right), a_{3}=$ $2 \cos \left(120^{\circ}\right)$. Note that if $a_{k}=2 \cos (a-b), a_{k+1}=2 \cos (b), a_{k+2}=2 \cos (a), a_{k+3}=4 \cos (a) \cos (b)-$ $2 \cos (b-a)=2 \cos (b+a)$. Therefore, by a simple inductive argument, $a_{n}=2 \cos \left(15 F_{n+3}\right)$ where F_{n} is the $n^{\text {th }}$ Fibonacci number. Since cos has a period of 360 degrees and the Fibonacci numbers $\bmod 24$ have a period of 24 , it follows that the sequence has a period of 24 . Therefore, it follows that $a_{2020}=a_{4}=2 \cos \left(195^{\circ}\right)=-\frac{\sqrt{6}+\sqrt{2}}{2}$.
8. For how many integers n with $3 \leq n \leq 2020$ does the inequality

$$
\sum_{k=0}^{\lfloor(n-1) / 4\rfloor}\binom{n}{4 k+1} 9^{k}>3 \sum_{k=0}^{\lfloor(n-3) / 4\rfloor}\binom{n}{4 k+3} 9^{k}
$$

hold?

Answer: 672

Solution: By the binomial theorem, we have $(1+\sqrt{3} i)^{n}=\sum_{k=0}^{n}\binom{n}{k}(\sqrt{3} i)^{k}$, and hence the imaginary part of $(1+\sqrt{3} i)^{n}$ is given by

$$
\begin{aligned}
& \binom{n}{1} \sqrt{3}-\binom{n}{3}(\sqrt{3})^{3}+\binom{n}{5}(\sqrt{3})^{5}-\binom{n}{7}(\sqrt{3})^{7}+\ldots \\
& =\sum_{k=0}^{\lfloor(n-1) / 4\rfloor}\binom{n}{4 k+1}(\sqrt{3})^{4 k+1}-\sum_{k=0}^{\lfloor(n-3) / 4\rfloor}\binom{n}{4 k+3}(\sqrt{3})^{4 k+3} \\
& =\sqrt{3}\left(\sum_{k=0}^{\lfloor(n-1) / 4\rfloor}\binom{n}{4 k+1} 9^{k}-3 \sum_{k=0}^{\lfloor(n-3) / 4\rfloor}\binom{n}{4 k+3} 9^{k}\right) .
\end{aligned}
$$

It follows that $\sum_{k=0}^{\lfloor(n-1) / 4\rfloor}\binom{n}{4 k+1} 9^{k}>3 \sum_{k=0}^{\lfloor(n-3) / 4\rfloor}\binom{n}{4 k+3} 9^{k}$ if and only if the imaginary part of $(1+\sqrt{3} i)^{n}$ is positive. Since $1+\sqrt{3} i=2(\cos (2 \pi / 3)+i \sin (2 \pi / 3))$, by de Moivre's formula we have $(1+\sqrt{3} i)^{n}=2^{n}(\cos (2 \pi n / 3)+i \sin (2 \pi n / 3))$, and hence the imaginary part of $(1+\sqrt{3} i)^{n}$ is positive if and only if $\sin (2 \pi n / 3)>0$, which is true if and only if $n \equiv 1,2 \bmod 6$. So now we ask how many integers n between 3 and 2020, inclusive, satisfy $n \equiv 1,2 \bmod 6$. Since 2016/6=336, we know there are $2 \times 336=672$ integers between 1 and 2016, inclusive, with remainder 1 or 2 . Thus there are 670 such integers between 3 and 2016, inclusive. Since 2017 and 2018 also have remainders 1 and 2, the total number of such integers between 3 and 2020 inclusive is 672 .
9. A sequence of numbers is defined by $a_{0}=2$ and for $i>0, a_{i}$ is the smallest positive integer such that $\sum_{j=0}^{i} \frac{1}{a_{j}}<1$. Find the smallest integer N such that $\sum_{i=N}^{\infty} \frac{1}{\log _{2}\left(a_{i}\right)}<\frac{1}{2^{2020}}$.
Answer: 2022
Solution: We claim that our sequence follows the recurrence $a_{n+1}=a_{n}^{2}-a_{n}+1$.
First, we will show that $\sum_{j=0}^{k} \frac{1}{a_{j}}=\frac{a_{k}^{2}-a_{k}-1}{a_{k}^{2}-a_{k}}$ for all k. This is obvious for $k=0$. In fact, we see that if this is true for all k, then it implies our recurrence. Therefore, to finish, we just need to show that $a_{k+1}=a_{k}^{2}-a_{k}+1$ implies that $\sum_{j=0}^{k+1} \frac{1}{a_{j}}=\frac{a_{k+1}^{2}-a_{k+1}-1}{a_{k+1}^{2}-a_{k+1}}$.
This is just a matter of brute force algebra.

$$
\begin{aligned}
\sum_{j=0}^{k+1} \frac{1}{a_{j}} & =\frac{a_{k}^{2}-a_{k}-1}{a_{k}^{2}-a_{k}}+\frac{1}{a_{k+1}}=\frac{a_{k}^{2}-a_{k}-1}{a_{k}^{2}-a_{k}}+\frac{1}{a_{k}^{2}-a_{k}+1} \\
& =\frac{a_{k}^{4}-2 a_{k}^{3}+2 a_{k}^{2}-a_{k}-1}{a_{k}^{4}-2 a_{k}^{3}+2 a_{k}^{2}-a_{k}}=\frac{a_{k+1}^{2}-a_{k+1}-1}{a_{k+1}^{2}-a_{k+1}}
\end{aligned}
$$

(To better understand what's going on, let $P(n)$ be the assertation that $a_{n+1}=a_{n}^{2}-a_{n}+1$ and $S(n)$ be the assertation that $\sum_{j=0}^{n} \frac{1}{a_{j}}=\frac{a_{n}^{2}-a_{n}-1}{a_{n}^{2}-a_{n}}$. It is easy to see that $S(n) \Longrightarrow P(n)$ and we have shown that $P(n) \Longrightarrow S(n+1)$. Since $S(0)$ is easily seen to be true, we have a domino effect which shows that $P(n)$ is true for all n.)
Now, it is easy to show that by induction, $2^{2^{i-1}} \leq a_{i} \leq 2^{2^{i}}$ for all $i \geq 0$. The motivation for this is noticing that the recurrence approximately grows as $a_{n+1}=\overline{a_{n}^{2}}$. Therefore, for any
nonnegative integer k,

$$
\frac{1}{2^{k-1}}=\sum_{i=k}^{\infty} \frac{1}{2^{i}} \leq \sum_{i=k}^{\infty} \frac{1}{\log _{2}\left(a_{i}\right)} \leq \sum_{i=k}^{\infty} \frac{1}{2^{i-1}} \leq \frac{1}{2^{k-2}}
$$

Therefore, our answer is 2022.
10. Let $f(a, b)$ be a third degree two-variable polynomial with integer coefficients such that $f(a, a)=$ 0 for all integers a and the sum

$$
\sum_{\substack{a, b \in \mathbf{Z}^{+} \\ a \neq b}} \frac{1}{2^{f(a, b)}}
$$

converges. Let $g(a, b)$ be the polynomial such that $f(a, b)=(a-b) g(a, b)$. If $g(1,1)=5$ and $g(2,2)=7$, find the maximum value of $g(20,20)$.
Answer: 43
Solution: Since we have that $f(a, a)=0$ for all integers a, we can write $f(a, b)=(a-b)$. $\left(m_{0} a^{2}+m_{1} a b+m_{2} b^{2}+m_{3} a+m_{4} b+m_{5}\right)$ for some integers m_{0}, m_{1}, m_{2} since every term of f has degree 3.
Thus, $g(a, b)=m_{0} a^{2}+m_{1} a b+m_{2} b^{2} m_{3} a+m_{4} b+m_{5}$.
A necessary condition for the sum to converge is that $g(n, n-1)$ must be positive for all natural numbers $n>N_{1}$ for some N_{1}. Otherwise, $f(n, n-1)$ is negative for infinitely many pairs ($n, n-1$) and the sum wouldn't converge.
Similarly, $g(n-1, n)$ must be negative for all natural numbers $n>N_{2}$ for some N_{2}. This can be rewritten as

$$
\begin{aligned}
& m_{0}\left(n^{2}\right)+m_{1}(n)(n-1)+m_{2}(n-1)^{2}+m_{3}(n)+m_{4}(n-1)+m_{5}>0 \\
& m_{0}(n-1)^{2}+m_{1}(n-1)(n)+m_{2}(n)^{2}+m_{3}(n-1)+m_{4}(n)+m_{5}<0
\end{aligned}
$$

For all $n>\max \left(N_{1}, N_{2}\right)$. In other words, we have:

$$
\begin{aligned}
& \left(m_{0}+m_{1}+m_{2}\right) n^{2}-\left(m_{1}+2 m_{2}+m_{3}+m_{4}\right) n+m_{2}-m_{4}+m_{5}>0 \\
& \left(m_{0}+m_{1}+m_{2}\right) n^{2}-\left(m_{1}+2 m_{0}+m_{3}+m_{4}\right) n+m_{0}-m_{3}+m_{5}<0
\end{aligned}
$$

In order for this to be possible, we must have $m_{0}+m_{1}+m_{2}=0$. Therefore, $g(a, a)=\left(m_{3}+\right.$ $\left.m_{4}\right) a+m_{5}$. From the values of $g(1,1)$ and $g(2,2)$ given, we know that $m_{5}=3$ and $m_{3}+m_{4}=2$. Thus, $g(20,20)=20 * 2+3=43$.
An example of a function that works is $f(a, b)=(a-b)\left(3 a^{2}-3 a b+2 a+3\right)$. Our sum becomes:

$$
\sum_{\substack{a, b \in \mathbf{Z}^{+} \\ a \neq b}} \frac{1}{2^{f(a, b)}}=\sum_{\substack{a, b \in \mathbf{Z}^{+} \\ a \neq b}} \frac{1}{2^{(a-b)\left(3 a^{2}-3 a b+2 a+3\right)}}=\sum_{\substack{a, b \in \mathbf{Z}^{+} \\ a \neq b}} \frac{1}{2^{(a-b)^{2}\left(3 a+\frac{2 a+3}{a-b}\right)}}
$$

Notice that the summation can be rewritten in terms of a and $a+k, k \neq 0$ instead of a and b. This gives us:

$$
\sum_{k=1}^{\infty} \sum_{a=1}^{\infty} \frac{1}{2^{k^{2}\left(3 a+\frac{2 a+3}{k}\right)}}+\sum_{k=1}^{\infty} \sum_{a=1}^{\infty} \frac{1}{2^{k^{2}\left(3 a-\frac{2 a+3}{k}\right)}}
$$

However, since $3 a+\frac{2 a+3}{k} \geq 3 a$ and $3 a-\frac{2 a+3}{k} \geq a-3$, our summation is less than or equal to

$$
\sum_{k=1}^{\infty} \frac{1}{2^{k^{2}}} \sum_{a=1}^{\infty} \frac{1}{2^{3 a}}+\sum_{k=1}^{\infty} \frac{1}{2^{k^{2}}} \sum_{a=1}^{\infty} \frac{1}{2^{a-3}}<1 \cdot 1+1 \cdot 8=9
$$

