1. Let $A B C D$ be a quadrilateral with $\angle D A B=\angle A B C=120^{\circ}$. If $A B=3, B C=2$, and $A D=4$, what is the length of $C D$?
Answer: $\sqrt{39}$
Solution: Let E be the intersection of rays $D A$ and $C B$. Then $\angle E A B=\angle E B A=60^{\circ}$ so $\triangle A B E$ is equilateral. It follows that $E A=E B=3$. Using Law of Cosines, we find that

$$
C D^{2}=E C^{2}+E D^{2}-2(E C)(E D) \cos 60^{\circ}=5^{2}+7^{2}-5 \cdot 7=39
$$

Thus, $C D=\sqrt{39}$.
2. Let $A B C D$ be a rectangle with $A B=8$ and $B C=6$. Point E is outside of the rectangle such that $C E=D E$. Point D is reflected over line $A E$ so that its image, D^{\prime}, lies on the interior of the rectangle. Point D^{\prime} is then reflected over diagonal $A C$, and its image lies on side $A B$. What is the length of $D E$?
Answer: $10 \sqrt{5}$
Solution: Let $D^{\prime \prime}$ be the image of D^{\prime} when reflecting across $A C$ so $D^{\prime \prime}$ is on $A B$. Reflection preserves angles, so let $x=\angle C A D^{\prime \prime}=\angle C A D^{\prime}$. By the same reasoning, $\angle D A E=\angle D^{\prime} A E$, but $\angle C A D^{\prime \prime}+\angle C A D^{\prime}+\angle D^{\prime} A E+\angle D A E=\angle B A D=90^{\circ}$, so $\angle D A E=45^{\circ}-x$.
Now establish a coordinate plane with $B=(0,0), A=(0,8), C=(6,0)$, and $D=(6,8)$. The slope of $A E$ is

$$
-\tan \left(45^{\circ}-x\right)=-\frac{\tan 45^{\circ}-\tan x}{1+\tan 45^{\circ} \tan x}=-\frac{1-\frac{6}{8}}{1+\frac{6}{8}}=-\frac{1}{7}
$$

so the equation of line $A E$ is $y=8-\frac{x}{7}$. But point E must lie on the line $y=4$, so we have $4=8-\frac{x}{7} \Longrightarrow x=28$. This implies that $E=(28,4)$, so

$$
D E=\sqrt{(28-6)^{2}+(4-8)^{2}}=\sqrt{22^{2}+4^{2}}=\sqrt{500}=10 \sqrt{5}
$$

3. Right triangle $A B C$ with $\angle A B C=90^{\circ}$ is inscribed in a circle ω_{1} with radius 3. A circle ω_{2} tangent to $A B, B C$, and ω_{1} has radius 2. Compute the area of $\triangle A B C$.

Answer: 7

Solution: Let O and P be the centers of ω_{1} and ω_{2} respectively. Let D and E be the points of tangency of ω_{2} with $A B$ and $B C$ respectively. Then $\angle B D P=\angle B E P=90^{\circ}$ and $B D=B E$, so $B D P E$ is a square with side length 2. Thus, $B P=2 \sqrt{2}$. But note that we have $O P=3-2=1$ and $O B=3$ so by the Pythagorean Theorem, $\triangle B P O$ is a right triangle.
Next, we have that $B P$ bisects $\angle A B C$ so $\angle O B C=45^{\circ}-\angle O B P$. Since $O B=O C$, we have $\angle A C B=\angle O B C$. Thus,

$$
\begin{aligned}
\sin \angle A C B & =\sin \left(45^{\circ}-\angle O B P\right) \\
& =\sin 45^{\circ} \cos \angle O B P-\cos 45^{\circ} \sin \angle O B P \\
& =\frac{\sqrt{2}}{2} \cdot \frac{2 \sqrt{2}}{3}-\frac{\sqrt{2}}{2} \cdot \frac{1}{3} \\
& =\frac{4-\sqrt{2}}{6}
\end{aligned}
$$

We then have that $A B=A C \sin \angle A C B=4-\sqrt{2}$. Finally, using the Pythagorean Theorem yields $B C=\sqrt{6^{2}-(4-\sqrt{2})^{2}}=4+\sqrt{2}$, so the area of $\triangle A B C$ is $\frac{(4-\sqrt{2})(4+\sqrt{2})}{2}=7$.

