1. Let $A B C D$ be a unit square. A semicircle with diameter $A B$ is drawn so that it lies outside of the square. If E is the midpoint of arc $A B$ of the semicircle, what is the area of triangle $C D E$?
Answer: $\frac{3}{4}$
Solution: To compute the area of $\triangle C D E$, we can multiply the base of the triangle by the height of the triangle and divide by 2 . Letting $C D$ be the base, it remains to compute the perpendicular distance from E to $C D$. Note that the radius of the semicircle is $\frac{1}{2}$, so the perpendicular distance from E to $C D$ must be $\frac{1}{2}+1=\frac{3}{2}$. Finally, $C D=1$, so the area of $\triangle C D E$ is $\frac{1}{2} \cdot 1 \cdot \frac{3}{2}=\frac{3}{4}$.
2. A cat and mouse live on a house mapped out by the points $(-1,0),(-1,2),(0,3),(1,2)$, $(1,0)$. The cat starts at the top of the house (point $(0,3))$ and the mouse starts at the origin $(0,0)$. Both start running clockwise around the house at the same time. If the cat runs at 12 units a minute and the mouse at 9 units a minute, how many laps around the house will the cat run before it catches the mouse?

Answer: 2

Solution: We note that the cat and mouse start off $3+\sqrt{2}$ units apart and the pace the cat catches up to the mouse is $12-9=3$ units a minute. Therefore, the cat will catch the mouse in $\frac{3+\sqrt{2}}{3}$ minutes. Then the cat will run $\frac{3+\sqrt{2}}{3} \times 12=4(3+\sqrt{2})$ units. The perimeter of the house is $2(3+\sqrt{2})$ units, so the cat runs $\frac{4(3+\sqrt{2})}{2(3+\sqrt{2})}=2$ laps.
3. In triangle $A B C$ with $A B=10$, let D be a point on side $B C$ such that $A D$ bisects $\angle B A C$. If $\frac{C D}{B D}=2$ and the area of $A B C$ is 50 , compute the value of $\angle B A D$ in degrees.

Answer: 15 ${ }^{\circ}$

Solution: Since $A D$ bisects $\angle B A C$, we have by the Angle-Bisector Theorem that $\frac{A B}{B D}=$ $\frac{A C}{C D} \Longrightarrow A C=\frac{C D}{B D} \cdot A B=20$. Let E be the point on $A C$ such that $B E \perp A C$. Since the area of $\triangle A B C$ is 50 , we have $\frac{A C \cdot B E}{2}=50 \Longrightarrow B E=5$. But $\triangle A B E$ is a right triangle and $A B=2 B E$, so $\triangle A B E$ must be a $30-60-90$ triangle. It follows that $\angle B A C=30^{\circ}$ so $\angle B A D=15^{\circ}$.
4. Let ω_{1} and ω_{2} be two circles intersecting at points P and Q. The tangent line closer to Q touches ω_{1} and ω_{2} at M and N respectively. If $P Q=3, Q N=2$, and $M N=P N$, what is $Q M^{2}$?
Answer: 6
Solution: Since $M N$ is tangent to ω_{1} at $M, \angle N M Q=\angle M P Q$. Since $M N=P N$, $\triangle M N P$ is isosceles so $\angle M P N=\angle P M N$. It follows that $\angle N P Q=\angle P M Q$. But $M N$ is tangent to ω_{2} at N, so $\angle N P Q=\angle M N Q$. Hence, $\angle M N Q=\angle P M Q$. Combining this with the fact that $\angle N M Q=\angle M P Q$, we see that $\triangle P M Q \sim \triangle M N Q$. Then $\frac{P Q}{Q M}=\frac{Q M}{Q N}$, so $Q M^{2}=P Q \cdot Q N=3 \cdot 2=6$.
5. The bases of a right hexagonal prism are regular hexagons of side length $s>0$, and the prism has height h. The prism contains some water, and when it is placed on a flat surface with a hexagonal face on the bottom, the water has depth $\frac{s \sqrt{3}}{4}$. The water depth doesn't change when the prism is turned so that a rectangular face is on the bottom. Compute $\frac{h}{s}$.
Answer: $\frac{6 \sqrt{3}}{5}$
Solution: When a hexagonal face is on the bottom, the volume of the water may be written as depth ($\frac{s \sqrt{3}}{4}$) times the area of the hexagonal base $\left(\frac{3 s^{2} \sqrt{3}}{2}\right)$, so the volume is $\frac{9 s^{3}}{8}$. When
a rectangular face is on the bottom, the volume of the water may be written as the crosssectional area times the length h. The cross-section is an isosceles trapezoid with height $\frac{s \sqrt{3}}{4}$, one base of length s, and angles 120° adjacent to this base. The area of this trapezoid is $\frac{5 s^{2} \sqrt{3}}{16}$. This can be seen by several ways. One way is to extend the trapezoid's sides past the base of length s to form an equilateral triangle, after which we may use similar triangles. Alternatively, we may notice that we can cut the cross-section into five equilateral triangles of side length $\frac{s}{2}$.
Finally, these two expressions for the volume of the water yield the equation $\frac{5 s^{2} h \sqrt{3}}{16}=\frac{9 s^{3}}{8}$, which can be rearranged to $\frac{h}{s}=\frac{6 \sqrt{3}}{5}$.
6. Let the altitude of $\triangle A B C$ from A intersect the circumcircle of $\triangle A B C$ at D. Let E be a point on line $A D$ such that $E \neq A$ and $A D=D E$. If $A B=13, B C=14$, and $A C=15$, what is the area of quadrilateral $B D C E$?
Answer: $\frac{441}{4}$
Solution: Let $A D$ intersect $B C$ at X. From the Pythagorean Theorem, we have that $13^{2}-B X^{2}=15^{2}-(14-B X)^{2}$, so solving for $B X$ yields $B X=5$. This implies that $C X=14-B X=9$ and $A X=12$. Next, note that since $A B D C$ is cyclic, $\angle B A X=\angle D C X$ and $\angle A B X=\angle C D X$ so $\triangle A B X \sim \triangle C D X$. Then $\frac{C D}{13}=\frac{9}{12} \Longrightarrow C D=\frac{39}{4}$. Also, $\frac{D X}{5}=$ $\frac{9}{12} \Longrightarrow D X=\frac{15}{4}$. By similar reasoning, $\triangle B D X \sim \triangle A C X$ so $\frac{B D}{15}=\frac{5}{12} \Longrightarrow B D=\frac{25}{4}$.
We also have that $\sin \angle B D E=\sin \angle B D X=\sin \angle A C X=\frac{12}{15}=\frac{4}{5}$ and $\sin \angle C D E=$ $\sin \angle C D X=\sin \angle A B X=\frac{12}{13}$. Finally, from $A D=D E$ we have that $D E=A X+D X=$ $12+\frac{15}{4}=\frac{63}{4}$. Thus,

$$
\begin{aligned}
{[B D C E] } & =[B D E]+[C D E] \\
& =\frac{B D \cdot D E \sin \cdot \angle B D E}{2}+\frac{C D \cdot D E \cdot \sin \angle C D E}{2} \\
& =\frac{1}{2} \cdot \frac{63}{4}\left(\frac{25}{4} \cdot \frac{4}{5}+\frac{39}{4} \cdot \frac{12}{13}\right) \\
& =\frac{63}{8} \cdot(5+9) \\
& =\frac{441}{4}
\end{aligned}
$$

7. Let G be the centroid of triangle $A B C$ with $A B=9, B C=10$, and $A C=17$. Denote D as the midpoint of $B C$. A line through G parallel to $B C$ intersects $A B$ at M and $A C$ at N. If $B G$ intersects $C M$ at E and $C G$ intersects $B N$ at F, compute the area of triangle $D E F$.
Answer: $\frac{9}{4}$
Solution: The centroid G cuts median $A D$ such that $A G: G D=2: 1$. Since $G M \| B C$, $\triangle A G M \sim \triangle A D B$. It follows that $G M: B D=2: 3$, and since $B C=2 B D, G M: B C=$ $1: 3$. Furthermore, $G M \| B C$ implies $\triangle G E M \sim \triangle B E C$, so $G E: B E=G M: B C=1: 3$.
Extend median $B G$ so that it intersects $A C$ at X. We know that $B G: G X=2: 1$, so if we let $G E=x$, we get $B E=3 x, B G=B E+G E=4 x$, and $G X=2 x$. It follows that $B E=E X=3 x$, so E is the midpoint of $B X$. But D is the midpoint of $B C$, so $D E \| C X$. Thus, $\triangle B D E \sim \triangle B C X$, so $D E: C X=1: 2$, meaning that $D E: A C=1: 4$.
By similar reasoning, we find that $G F: C F=1: 3$ and $D F: A B=1: 4$. Combining the first ratio with $G E: B E=1: 3$ shows that $E F \| B C$, so $\triangle G E F \sim \triangle G B C$. Hence,
$E F: B C=1: 4$. It follows that $\triangle D F E \sim \triangle A B C$ as the ratio of the corresponding sides is $1: 4$.
Using Heron's Formula, the area of $\triangle A B C$ is $\sqrt{18(18-17)(18-10)(18-9)}=36$, so the area of $\triangle D E F$ is $\frac{36}{16}=\frac{9}{4}$.
8. In the coordinate plane, a point A is chosen on the line $y=\frac{3}{2} x$ in the first quadrant. Two perpendicular lines l_{1} and l_{2} intersect at A where l_{1} has slope $m>1$. Let l_{1} intersect the x-axis at B, and l_{2} intersects the x and y axes at C and D, respectively. Suppose that line $B D$ has slope $-m$ and $B D=2$. Compute the length of $C D$.
Answer: $3+\sqrt{13}$
Solution: Let A^{\prime} be the reflection of A across the x-axis. Since l_{1} has slope m and line $B D$ has slope $-m$, line $B D$ is the image of l_{1} when reflected across the x-axis. It follows that A^{\prime} lies on line $B D$. Moreover, since l_{2} has slope $-\frac{1}{m}$, line $A^{\prime} C$ has slope $\frac{1}{m}$. Therefore, line $A^{\prime} C$ is perpendicular to line $B D$.
Let $\angle A^{\prime} D C=\theta$. We have $C D=\frac{A^{\prime} D}{\cos \theta}=\frac{A^{\prime} B+B D}{\cos \theta}=\frac{A B+2}{\cos \theta}$. From right triangle $B A D$, we have $A B=B D \sin \theta=2 \sin \theta$, so $C D=\frac{2(1+\sin \theta)}{\cos \theta}$.
Let O denote the origin. We have $\angle B O D=90^{\circ}=\angle B A D$, so $A B O D$ is cyclic. It follows that $\angle A O B=\angle A D B=\theta$. But line $O A$ is defined by the equation $y=\frac{3}{2} x$, so $\sin \theta=\frac{3}{\sqrt{13}}$ and $\cos \theta=\frac{2}{\sqrt{13}}$. Finally, $C D=\frac{2\left(1+\frac{3}{\sqrt{13}}\right)}{\frac{2}{\sqrt{13}}}=3+\sqrt{13}$.
9. Let $A B C D$ be a quadrilateral with $\angle A B C=\angle C D A=45^{\circ}, A B=7$, and $B D=25$. If $A C$ is perpendicular to $C D$, compute the length of $B C$.

Answer: 12 $\sqrt{2}$

Solution: Let Γ be the circumcircle of $\triangle A B C$ and let line $C D$ intersect Γ at E. Note that $A B E C$ is cyclic and $\angle A C E=90^{\circ}$ so $\angle A B E=90^{\circ}$. It follows that $\angle A E C=\angle A B C=45^{\circ}$ so $\triangle A D E$ is a 45-45-90 triangle with $A D=A E$.
Let ω be the circumcircle of $\triangle A C D$ and let line $A B$ intersect ω at F. Note that $A C D F$ is cyclic and $\angle A C D=90^{\circ}$ so $\angle A F D=90^{\circ}$. It follows that $\angle A F C=\angle A D C=45^{\circ}$ so $\triangle B C F$ is a 45-45-90 triangle with $B C=C F$.
Observe that $\angle B E A=90^{\circ}-\angle B A E=\angle F A D$. But $A E=D A$ and $\angle A F D=90^{\circ}=\angle E B A$, so $\triangle A E B \cong \triangle D A F$. It follows that $D F=A B=7$. Then by the Pythagorean Theorem on right triangle $B D F$, we have that $B F=24$. Finally, using the 45-45-90 triangle $B C F$, we find that $B C=12 \sqrt{2}$.
10. Let $A B C$ be an acute triangle with $B C=48$. Let M be the midpoint of $B C$, and let D and E be the feet of the altitudes drawn from B and C to $A C$ and $A B$ respectively. Let P be the intersection between the line through A parallel to $B C$ and line $D E$. If $A P=10$, compute the length of $P M$.

Answer: 26

Solution: Let H be the intersection of $B D$ and $C E$, or in other words, the orthocenter of $\triangle A B C$. First, we show that $A D H E$ is cyclic. Note that $\angle H B C=90^{\circ}-\angle A C B$ and $\angle H C B=90^{\circ}-\angle A B C$, so

$$
\angle D H E=\angle B H C=180-\angle H B C-\angle H C B=\angle A C B+\angle A B C
$$

It follows that $\angle D H E+\angle B A C=180^{\circ}$, as desired.

Furthermore, we have that $\angle A D H=90^{\circ}$, so $A H$ is the diameter of the circumcircle of $A D H E$. But $A P \| B C$ and $A H \perp B C$, so $\angle P A H=90^{\circ}$. It follows that $P A$ is tangent to the circumcircle of $A D H E$. Then by Power of a Point, $P A^{2}=(P D)(P E)$.
Next, we have that $\angle B D C=90^{\circ}=\angle B E C$, so $B C D E$ is cyclic. Since M is the midpoint of $B C$, the circumcenter of the $B C D E$ is M. Then if r is the radius of that circumcircle of $B C D E$, by Power of a Point, $(P D)(P E)=(P M-r)(P M+r)=P M^{2}-r^{2}$. Since $r=\frac{B C}{2}=24$, we can combine our results to get

$$
P A^{2}=P M^{2}-r^{2} \Longrightarrow P M=\sqrt{10^{2}+24^{2}}=\boxed{26}
$$

