1. Find the number of pairs (A, B) of distinct subsets of $\{1,2,3,4,5,6,7,8\}$, such that A is a proper subset of B.
Answer: 6305
Solution: Since B cannot be empty, the number of elements in B is between 1 and 8 . Suppose that B has n elements. There are $2^{n}-1$ possible options for A, since A and B are distinct. Thus the total number of pairs is

$$
\begin{aligned}
\sum_{n=1}^{8}\binom{8}{n}\left(2^{n}-1\right) & =\sum_{n=0}^{8}\binom{8}{n}\left(2^{n}-1\right) \\
& =\sum_{n=0}^{8}\binom{8}{n} 2^{n}-\sum_{n=0}^{8}\binom{8}{n} \\
& =(2+1)^{8}-(1+1)^{8} \\
& =6305 .
\end{aligned}
$$

2. What is the remainder when $\left(5^{2}+3^{2}\right)\left(5^{4}+3^{4}\right)\left(5^{8}+3^{8}\right) \ldots\left(5^{2^{419}}+3^{2^{419}}\right)\left(5^{2^{420}}+3^{2^{420}}\right)$ is divided by 1285 ?
Answer: 514
Solution 1: Let $S=\left(5^{2}+3^{2}\right)\left(5^{4}+3^{4}\right)\left(5^{8}+3^{8}\right) \ldots\left(5^{419}+3^{2^{419}}\right)\left(5^{2^{420}}+3^{2^{420}}\right)$. Then,

$$
\begin{aligned}
\left(5^{2}-3^{2}\right) S & =\left(5^{2}-3^{2}\right)\left(5^{2}+3^{2}\right)\left(5^{4}+3^{4}\right)\left(5^{8}+3^{8}\right) \ldots\left(5^{2^{419}}+3^{2^{419}}\right)\left(5^{2^{420}}+3^{2^{420}}\right) \\
16 S & =\quad\left(5^{4}-3^{4}\right)\left(5^{4}+3^{4}\right)\left(5^{8}+3^{8}\right) \ldots\left(5^{2^{419}}+3^{2^{419}}\right)\left(5^{2^{420}}+3^{2^{420}}\right) \\
& \ldots \\
16 S & =5^{2^{421}}-3^{2^{421}} \\
S & \equiv(16)^{-1}\left(5^{2^{421}}-3^{2^{421}}\right) \bmod 1285
\end{aligned}
$$

By Euler's theorem, for relatively prime a and $n, a^{\phi(n)} \equiv 1 \bmod n$. Note that $1285=5 \cdot 257$, so $\phi(5)=4$ and $\phi(257)=256$ will be helpful. First we consider $S \bmod 257$:

$$
\begin{aligned}
& S \equiv(16)^{-1}\left(5^{2^{421}} \bmod 256-3^{2^{421} \bmod 256}\right) \bmod 257 \\
& S \equiv(16)^{-1}(1-1) \bmod 257 \\
& S \equiv 0 \bmod 257
\end{aligned}
$$

Next we consider $S \bmod 5$:

$$
\begin{aligned}
& S \equiv(16)^{-1}\left(5^{2^{421}}-3^{2^{421} \bmod 4}\right) \bmod 5 \\
& S \equiv(1)(0-1) \bmod 5
\end{aligned}
$$

$$
S \equiv 4 \bmod 5
$$

Thus, from $S \equiv 0 \bmod 257$ and $S \equiv 4 \bmod 5$, it follows that $S \equiv 514 \bmod 1285$.
3. Let $S=\{1,2,3,4,5\}$. How many ordered pairs of functions (f, g) satisfy $f, g: S \rightarrow S$, $f(g(x))=g(x)$, and $g(f(x))=f(x)$ for all $x \in S$?
Answer: 1536

Solution: For some $x \in S$, let $g(x)=y$. Then we have $f(g(x))=g(x) \Longrightarrow f(y)=y$, and $g(f(x))=f(x) \Longrightarrow g(y)=y$. By symmetry, if $f(a)=b$ for some $a \in S$, then $f(b)=b$ and $g(b)=b$.
For a function h, let x be a fixed point if $h(x)=x$. Then by above, all fixed points of f must also be fixed points of g and vice versa. Furthermore, if $f(x)=y$ or $g(x)=y$ for $x \neq y$, then y must be a fixed point.
Therefore, we can count the number of ordered pairs of functions by casework over the number of fixed points. If there are n fixed points, there are $\binom{5}{n}$ ways to choose them. For the rest of the $5-n$ elements in the domain, they have to map to a fixed point. Hence, there are n^{5-n} ways to choose the values for the remaining elements in the domain for each of the two functions. As a result, the total number of ordered pairs of functions is

$$
\sum_{n=1}^{5}\binom{5}{n} n^{2(5-n)}=1536
$$

