1. Find the number of pairs \((A, B)\) of distinct subsets of \(\{1, 2, 3, 4, 5, 6, 7, 8\}\), such that \(A\) is a proper subset of \(B\).

Answer: 6305

Solution: Since \(B\) cannot be empty, the number of elements in \(B\) is between 1 and 8. Suppose that \(B\) has \(n\) elements. There are \(2^n - 1\) possible options for \(A\), since \(A\) and \(B\) are distinct. Thus the total number of pairs is

\[
\sum_{n=1}^{8} \binom{8}{n} (2^n - 1) = \sum_{n=0}^{8} \binom{8}{n} (2^n - 1)
\]

\[
= \sum_{n=0}^{8} \binom{8}{n} 2^n - \sum_{n=0}^{8} \binom{8}{n}
\]

\[
= (2 + 1)^8 - (1 + 1)^8 = 6305
\]

2. What is the remainder when \((5^2 + 3^2)(5^4 + 3^4)(5^8 + 3^8)\ldots(5^{2419} + 3^{2419})(5^{2420} + 3^{2420})\) is divided by 1285?

Answer: 514

Solution 1: Let \(S = (5^2 + 3^2)(5^4 + 3^4)(5^8 + 3^8)\ldots(5^{2419} + 3^{2419})(5^{2420} + 3^{2420})\). Then,

\[16S = (5^4 - 3^4)(5^8 + 3^8)\ldots(5^{2419} + 3^{2419})(5^{2420} + 3^{2420})\]

\[\vdots\]

\[16S = 5^{2421} - 3^{2421}\]

\[S \equiv (16)^{-1}(5^{2421} - 3^{2421}) \mod 1285\]

By Euler’s theorem, for relatively prime \(a\) and \(n\), \(a^{\phi(n)} \equiv 1 \mod n\). Note that 1285 = 5 \cdot 257, so \(\phi(5) = 4\) and \(\phi(257) = 256\) will be helpful. First we consider \(S \mod 257\):

\[S \equiv (16)^{-1}(5^{2421} \mod 256 - 3^{2421} \mod 256) \mod 257\]

\[S \equiv (16)^{-1}(1 - 1) \mod 257\]

\[S \equiv 0 \mod 257\]

Next we consider \(S \mod 5\):

\[S \equiv (16)^{-1}(5^{2421} - 3^{2421}) \mod 5\]

\[S \equiv (1)(0 - 1) \mod 5\]

\[S \equiv 4 \mod 5\]

Thus, from \(S \equiv 0 \mod 257\) and \(S \equiv 4 \mod 5\), it follows that \(S \equiv 514 \mod 1285\).

3. Let \(S = \{1, 2, 3, 4, 5\}\). How many ordered pairs of functions \((f, g)\) satisfy \(f, g : S \rightarrow S\), \(f(g(x)) = g(x)\), and \(g(f(x)) = f(x)\) for all \(x \in S\)?

Answer: 1536
Solution: For some \(x \in S \), let \(g(x) = y \). Then we have \(f(g(x)) = g(x) \implies f(y) = y \), and \(g(f(x)) = f(x) \implies g(y) = y \). By symmetry, if \(f(a) = b \) for some \(a \in S \), then \(f(b) = b \) and \(g(b) = b \).

For a function \(h \), let \(x \) be a fixed point if \(h(x) = x \). Then by above, all fixed points of \(f \) must also be fixed points of \(g \) and vice versa. Furthermore, if \(f(x) = y \) or \(g(x) = y \) for \(x \neq y \), then \(y \) must be a fixed point.

Therefore, we can count the number of ordered pairs of functions by casework over the number of fixed points. If there are \(n \) fixed points, there are \(\binom{5}{n} \) ways to choose them. For the rest of the \(5 - n \) elements in the domain, they have to map to a fixed point. Hence, there are \(n^{5-n} \) ways to choose the values for the remaining elements in the domain for each of the two functions. As a result, the total number of ordered pairs of functions is

\[
\sum_{n=1}^{5} \binom{5}{n} n^{2(5-n)} = 1536
\]