1. Find the number of pairs (A, B) of distinct subsets of $\{1, 2, 3, 4, 5, 6, 7, 8\}$, such that A is a proper subset of B.

Answer: 6305

Solution: Since *B* cannot be empty, the number of elements in *B* is between 1 and 8. Suppose that *B* has *n* elements. There are $2^n - 1$ possible options for *A*, since *A* and *B* are distinct. Thus the total number of pairs is

$$\sum_{n=1}^{8} \binom{8}{n} (2^n - 1) = \sum_{n=0}^{8} \binom{8}{n} (2^n - 1)$$
$$= \sum_{n=0}^{8} \binom{8}{n} 2^n - \sum_{n=0}^{8} \binom{8}{n}$$
$$= (2+1)^8 - (1+1)^8$$
$$= \boxed{6305}.$$

2. What is the remainder when $(5^2 + 3^2)(5^4 + 3^4)(5^8 + 3^8) \dots (5^{2^{419}} + 3^{2^{419}})(5^{2^{420}} + 3^{2^{420}})$ is divided by 1285?

Answer: 514

Solution 1: Let $S = (5^2 + 3^2)(5^4 + 3^4)(5^8 + 3^8) \dots (5^{2^{419}} + 3^{2^{419}})(5^{2^{420}} + 3^{2^{420}})$. Then, $(5^2 - 3^2)S = (5^2 - 3^2)(5^2 + 3^2)(5^4 + 3^4)(5^8 + 3^8) \dots (5^{2^{419}} + 3^{2^{419}})(5^{2^{420}} + 3^{2^{420}})$ $16S = (5^4 - 3^4)(5^4 + 3^4)(5^8 + 3^8) \dots (5^{2^{419}} + 3^{2^{419}})(5^{2^{420}} + 3^{2^{420}})$ \dots $16S = 5^{2^{421}} - 3^{2^{421}}$ $S \equiv (16)^{-1}(5^{2^{421}} - 3^{2^{421}}) \mod 1285$

By Euler's theorem, for relatively prime a and n, $a^{\phi(n)} \equiv 1 \mod n$. Note that $1285 = 5 \cdot 257$, so $\phi(5) = 4$ and $\phi(257) = 256$ will be helpful. First we consider S mod 257:

$$S \equiv (16)^{-1} (5^{2^{421} \mod 256} - 3^{2^{421} \mod 256}) \mod 257$$

$$S \equiv (16)^{-1} (1-1) \mod 257$$

$$S \equiv 0 \mod 257$$

Next we consider $S \mod 5$:

$$S \equiv (16)^{-1} (5^{2^{421}} - 3^{2^{421} \mod 4}) \mod 5$$

$$S \equiv (1)(0-1) \mod 5$$

$$S \equiv 4 \mod 5$$

Thus, from $S \equiv 0 \mod 257$ and $S \equiv 4 \mod 5$, it follows that $S \equiv 514 \mod 1285$.

3. Let $S = \{1, 2, 3, 4, 5\}$. How many ordered pairs of functions (f, g) satisfy $f, g : S \to S$, f(g(x)) = g(x), and g(f(x)) = f(x) for all $x \in S$?

Answer: 1536

Solution: For some $x \in S$, let g(x) = y. Then we have $f(g(x)) = g(x) \implies f(y) = y$, and $g(f(x)) = f(x) \implies g(y) = y$. By symmetry, if f(a) = b for some $a \in S$, then f(b) = b and g(b) = b.

For a function h, let x be a fixed point if h(x) = x. Then by above, all fixed points of f must also be fixed points of g and vice versa. Furthermore, if f(x) = y or g(x) = y for $x \neq y$, then y must be a fixed point.

Therefore, we can count the number of ordered pairs of functions by casework over the number of fixed points. If there are n fixed points, there are $\binom{5}{n}$ ways to choose them. For the rest of the 5-n elements in the domain, they have to map to a fixed point. Hence, there are n^{5-n} ways to choose the values for the remaining elements in the domain for each of the two functions. As a result, the total number of ordered pairs of functions is

$$\sum_{n=1}^{5} \binom{5}{n} n^{2(5-n)} = \boxed{1536}$$