1. Let $f(x)$ be a polynomial with integer coefficients such that $f(u)-f(v)$ divides $u^{2}-v^{2}$ for all integers u and v. Given that $f(0)=1$ and $f(1)=2$, find the largest possible value of $f(50)$.
Answer: 2501
Solution: Substitute $v=0$. Since $f(u)-1 \mid u^{2}$ for all u, we know that $\operatorname{deg}(f(x)) \leq 2$.
Let $f(x)=a x^{2}+b x+c$, then $f(0)=c=1$ and $f(1)=a+b+c=2$ or $a+b=1$. We also have:

$$
\frac{f(u)-f(v)}{u-v}=\frac{a\left(u^{2}-v^{2}\right)+b(u-v)}{u-v}=a(u+v)+b
$$

divides $u+v$ for all integers u and v. If $a \neq 0$ then b has to be 0 , meaning that $a=1$ and $f(x)=x^{2}+1$. If $a=0$ then $b=1, f(x)=x+1$.
Thus the largest possible value of $f(50)$ is $50^{2}+1=2501$.
2. How many complex numbers z have the property that $z^{2}=\bar{z}$, where \bar{z} is the complex conjugate of z ?
Answer: 4
Solution: If $z^{2}=\bar{z}$, then $\left|z^{2}\right|=|\bar{z}|=|z|$ so $|z|=0$ or $|z|=1$. If $|z|=0$, then $z=0$ is the only solution. If $|z|=1$, then $z=e^{i \theta}$ and $e^{2 i \theta}=e^{-i \theta}$, so $e^{3 i \theta}=1$. The 4 solutions are 0,1 , $e^{i \pi / 3}$, and $e^{2 i \pi / 3}$.
3. Compute

$$
\sum_{n=1}^{\infty}\binom{n}{2}\left(\frac{3}{4}\right)^{n}
$$

Answer: 36

Solution 1: Let S be the sum we are trying to compute, and $f(x)=\sum_{n=1}^{\infty} n(n-1) x^{n}$. We can see that $S=\frac{1}{2} f\left(\frac{3}{4}\right)$. Then we have:

$$
\begin{aligned}
f(x) & =\sum_{n=2}^{\infty} n(n-1) x^{n} \\
& =\sum_{n=2}^{\infty} x^{2} \cdot n(n-1) x^{n-2} \\
& =\sum_{n=2}^{\infty} x^{2} \frac{d^{2}}{d x^{2}} x^{n-2} \\
& =x^{2} \frac{d^{2}}{d x^{2}} \sum_{n=2}^{\infty} x^{n-2} \\
& =x^{2} \frac{d^{2}}{d x^{2}} \frac{1}{1-x} \\
& =\frac{2 x^{2}}{(1-x)^{3}}
\end{aligned}
$$

Setting $x=\frac{3}{4}$, it is easy to see that $f\left(\frac{3}{4}\right)=72$, and thus the desired sum is 36 .
Solution 2: Define series A and B as follows:

$$
\begin{aligned}
A & =\sum_{n=1}^{\infty} n\left(\frac{3}{4}\right)^{n} \\
B & =\sum_{n=1}^{\infty} n(n-1)\left(\frac{3}{4}\right)^{n} \\
\frac{3}{4} A & =\sum_{n=2}^{\infty}(n-1)\left(\frac{3}{4}\right)^{n} \\
A-\frac{3}{4} A & =\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n}=\frac{3}{4} \cdot 4=3 \\
A & =12 \\
\frac{3}{4} B & =\sum_{n=2}^{\infty}(n-1)(n-2)\left(\frac{3}{4}\right)^{n} \\
B-\frac{3}{4} B & =\sum_{n=2}^{\infty} 2(n-1)\left(\frac{3}{4}\right)^{n} \\
\frac{1}{4} B & =\frac{3}{4} \sum_{n=1} 2 n\left(\frac{3}{4}\right)^{n}=\frac{3}{4} \cdot 2 A=18 \\
B & =72
\end{aligned}
$$

The desired sum is equal to $B / 2$, so the answer is 36 .

