1. David owns a parking lot for vehicles. A vehicle is either a motorcycle with two wheels or a car with four wheels. Today, there are 100 vehicles parked in his parking lot. The total number of wheels in David's parking lot is 326 . If David collects $\$ 1.00$ from each motorcycle and $\$ 2.00$ from each car per day, how much money in dollars does David collect today?
Answer: 163
Solution: Let x and y be the number of motorcycles and cars, respectively. We have

$$
\begin{gathered}
x+y=100 \\
2 x+4 y=326 .
\end{gathered}
$$

But note that the amount collected will be $x+2 y$ which is half of $2 x+4 y$. So, David can collect $x+2 y=\frac{326}{2}=163$ dollars.
2. Three consecutive terms of a geometric sequence of positive integers multiply to $1,000,000$. If the common ratio is greater than 1 , what is the smallest possible sum of the three terms?

Answer: 305

Solution: By the AM-GM inequality, the sum is minimized when the terms are as close as possible to each other. So, we want r to be as close to 1 as possible. First, we find the middle term. If the first term is a, then the three terms are $a, a r, a r^{2}$ respectively. So, $(a r)^{3}=1,000,000$. Thus, the middle term can be computed by taking the cube root of $1,000,000$, which is 100 . Next, we must find the 2 factors of $\frac{1,000,000}{100}=10,000$ which are closest to 100 . Inspection reveals that 80 and 125 are the 2 desired factors of 10,000 , hence our sum is $80+100+125=305$. Moreover, we can confirm that no other possible factors exist, as no numbers between 80 and 100 exclusive or between 100 and 125 exclusive have only 2 or 5 as prime factors.
3. Let x, y be real numbers such that

$$
\begin{aligned}
x+y & =2 \\
x^{4}+y^{4} & =1234 .
\end{aligned}
$$

Find $x y$.
Answer: -21
Solution: Note that:

$$
x^{4}+y^{4}=(x+y)^{4}-4 x y(x+y)^{2}+2(x y)^{2}
$$

Let $P=x y$ be the product we want to solve for. Then the equation $x^{4}+y^{4}=1234$ becomes:

$$
\begin{array}{r}
1234=16-16 P+2 P^{2} \\
\Longrightarrow P^{2}-8 P-609=0 \\
\Longrightarrow(P-29)(P+21)=0 .
\end{array}
$$

It follows that $P=29$ or $P=-21$. If P is 29 , then x and y are the roots of the quadratic $X^{2}-2 X+29$, which are not real. Hence $P=-21$.
4. Evaluate $(350+90 \sqrt{15})^{\frac{1}{3}}+(350-90 \sqrt{15})^{\frac{1}{3}}$.

Answer: 10

Solution: Let $S=(350+90 \sqrt{15})^{\frac{1}{3}}+(350-90 \sqrt{15})^{\frac{1}{3}}$. Then,

$$
\begin{aligned}
S^{3} & =350+90 \sqrt{15}+3(350+90 \sqrt{15})^{\frac{1}{3}}(350-90 \sqrt{15})^{\frac{1}{3}}\left((350+90 \sqrt{15})^{\frac{1}{3}}+(350-90 \sqrt{15})^{\frac{1}{3}}\right) \\
& +350-90 \sqrt{15} \\
& =700+3\left(350^{2}-(90 \sqrt{15})^{2}\right)^{\frac{1}{3}} S \\
& =700+30 S .
\end{aligned}
$$

Note that both $(350+90 \sqrt{15})$ and $(350-90 \sqrt{15})$ are positive. Hence, S must be a positive number that satisfies $S^{3}-30 S-700=(S-10)\left(S^{2}+10 S+70\right)=0$. In fact, $S=10$ is the only real solution to the cubic equation. Therefore, $(350+90 \sqrt{15})^{\frac{1}{3}}+(350-90 \sqrt{15})^{\frac{1}{3}}=10$.
5. Let $f(x)=36 x^{4}-36 x^{3}-x^{2}+9 x-2$. Then let the four roots of $f(x)$ be r_{1}, r_{2}, r_{3}, and r_{4}. Find the value of

$$
\left(r_{1}+r_{2}+r_{3}\right)\left(r_{1}+r_{2}+r_{4}\right)\left(r_{1}+r_{3}+r_{4}\right)\left(r_{2}+r_{3}+r_{4}\right) .
$$

Answer: $\frac{1}{6}$
Solution 1: Note that $s=r_{1}+r_{2}+r_{3}+r_{4}=\frac{36}{36}=1$. Then

$$
\begin{aligned}
\left(r_{1}+r_{2}+r_{3}\right)\left(r_{1}+r_{2}+r_{4}\right)\left(r_{1}+r_{3}+r_{4}\right)\left(r_{2}+r_{3}+r_{4}\right) & =\left(s-r_{4}\right)\left(s-r_{3}\right)\left(s-r_{2}\right)\left(s-r_{1}\right) \\
& =\frac{f(s)}{36} \\
& =\frac{36-36-1+9-2}{36} \\
& =\frac{1}{6} .
\end{aligned}
$$

Solution 2: Note that $s=r_{1}+r_{2}+r_{3}+r_{4}=\frac{36}{36}=1$ and also $f(x)=(3 x-1)(3 x-2)(2 x-$ 1) $(2 x+1)$. So, the roots are $\frac{1}{3}, \frac{2}{3}, \frac{1}{2},-\frac{1}{2}$. Hence,

$$
\begin{aligned}
\left(r_{1}+r_{2}+r_{3}\right)\left(r_{1}+r_{2}+r_{4}\right)\left(r_{1}+r_{3}+r_{4}\right)\left(r_{2}+r_{3}+r_{4}\right) & =\left(s-r_{4}\right)\left(s-r_{3}\right)\left(s-r_{2}\right)\left(s-r_{1}\right) \\
& =\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)\left(\frac{3}{2}\right) \\
& =\frac{1}{6} .
\end{aligned}
$$

6. Let $f(X)$ be a complex monic quadratic with real roots $\frac{1}{3}, \frac{2}{3}$. (The polynomial $f(X)$ is of the form $X^{2}+b X+c$ where b, c, X are complex numbers.) If $|z|=1$, what is the sum of all possible values of $f(z)$ such that $f(z)=\overline{f(z)}$?
Answer: $\frac{5}{3}$
Solution: We know that $f(X)=\left(X-\frac{1}{3}\right)\left(X-\frac{2}{3}\right)$. From now on, we refer to the roots as r_{1}, r_{2}. Then we know that $f(z)$ can be written as $\left(z-r_{1}\right)\left(z-r_{2}\right)$. Notice that by properties of conjugation, we can write $\overline{f(z)}=\left(\bar{z}-r_{1}\right)\left(\bar{z}-r_{2}\right)$. Expanding and simplifying $f(z)=\overline{f(z)}$ shows that

$$
\bar{z}^{2}-\bar{z}\left(r_{1}+r_{2}\right)=z^{2}-z\left(r_{1}+r_{2}\right) .
$$

This can be rearranged as $(\bar{z}-z)(\bar{z}+z)=(\bar{z}-z)\left(r_{1}+r_{2}\right)$.

If $\bar{z}=z$, then z has no imaginary part and thus z is equal to 1 or -1 , yielding $f(1)=\frac{2}{9}$ or $f(-1)=\frac{20}{9}$. Otherwise, we can cancel $(\bar{z}-z)$. Separating the real and imaginary parts of z as $x+i y$, we see that $x=\frac{r_{1}+r_{2}}{2}$ and $y^{2}=1-x^{2}$. Notice that $f(z)=\overline{f(z)}$ means $f(z)$ is real, hence we see that
$f(z)=\operatorname{Re}\left(\left(x+i y-r_{1}\right)\left(x+i y-r_{2}\right)\right)=x^{2}-y^{2}-x\left(r_{1}+r_{2}\right)+r_{1} r_{2}=x^{2}-\left(1-x^{2}\right)-2 x^{2}+r_{1} r_{2}=-\frac{7}{9}$.
The three options are then $\frac{2}{9}, \frac{20}{9},-\frac{7}{9}$ and therefore, the sum of all possible values of $f(z)$ is $\frac{5}{3}$.
7. Given that x, y are real numbers satisfying $x>y>0$, compute the minimum value of

$$
\frac{5 x^{2}-2 x y+y^{2}}{x^{2}-y^{2}}
$$

Answer: $2+2 \sqrt{2}$
Solution: We first use partial fraction decomposition on this function. Doing so gives us

$$
\begin{aligned}
\frac{5 x^{2}-2 x y+y^{2}}{x^{2}-y^{2}} & =\frac{5 x^{2}-2 x y+y^{2}}{(x+y)(x-y)} \\
& =\frac{3 x^{2}-2 x y+3 y^{2}+2\left(x^{2}-y^{2}\right)}{(x+y)(x-y)} \\
& =\frac{x^{2}+2 x y+y^{2}+2\left(x^{2}-2 x y-y^{2}\right)}{(x+y)(x-y)}+2 \\
& =\frac{(x+y)^{2}+2(x-y)^{2}}{(x+y)(x-y)}+2 \\
& =\frac{x+y}{x-y}+\frac{2(x-y)}{x+y}+2 .
\end{aligned}
$$

We can then apply AM-GM to the first two terms to get

$$
\frac{x+y}{x-y}+\frac{2(x-y)}{x+y} \geq 2 \sqrt{2} .
$$

Thus, the minimum is $2+2 \sqrt{2}$, which is achieved when x, y satisfy the equation $(x+y)^{2}=$ $2(x-y)^{2}$, which has solutions $y=(3 \pm 2 \sqrt{2}) x$. When $y=(3-2 \sqrt{2}) x$ and $x>0$, the condition $x>y>0$ is satisfied.
8. The equation

$$
(x-1)(x-2)(x-4)(x-5)(x-7)(x-8)=(x-3)(x-6)(x-9)
$$

has distinct roots $r_{1}, r_{2}, \ldots, r_{6}$. Evaluate

$$
\sum_{i=1}^{6}\left(r_{i}-1\right)\left(r_{i}-2\right)\left(r_{i}-4\right)
$$

Answer: 273

Solution: Let $P(x)$ be a generic 6th degree polynomial $x^{6}-a_{5} x^{5}+a_{4} x^{4}-a_{3} x^{3}+a_{2} x^{2}-$ $a_{1} x_{1}+a_{0}$ with roots $r_{1}, r_{2}, \ldots, r_{6}$. Let s_{1} be the sum of all roots, s_{2} be the sum of the squares of all roots, and s_{3} be the sum of the cubes of all roots. We use Vieta's formulas to find expressions for s_{1}, s_{2}, s_{3} in terms of the coefficients a_{i} :

$$
\begin{aligned}
a_{5}= & s_{1} \\
a_{4} & =r_{1} r_{2}+r_{1} r_{3}+\cdots+r_{4} r_{6}+r_{5} r_{6}=\frac{1}{2}\left(s_{1}^{2}-s_{2}\right) \\
a_{3} & =r_{1} r_{2} r_{3}+r_{1} r_{2} r_{4}+\cdots+r_{3} r_{5} r_{6}+r_{4} r_{5} r_{6} \\
s_{1} s_{2} & =\left(r_{1}^{3}+r_{2}^{3}+\cdots+r_{6}^{3}\right)+\left(r_{1} r_{2}^{2}+r_{1} r_{3}^{2}+\cdots+r_{6} r_{4}^{2}+r_{6} r_{5}^{2}\right) \\
s_{1} s_{2}-s_{3}= & r_{1} r_{2}^{2}+r_{1} r_{3}^{2}+\cdots+r_{6} r_{4}^{2}+r_{6} r_{5}^{2} \\
s_{1}^{3}= & \left(r_{1}^{3}+r_{2}^{3}+\cdots+r_{6}^{3}\right)+3\left(r_{1} r_{2}^{2}+r_{1} r_{3}^{2}+\cdots+r_{6} r_{5}^{2}\right) \\
& \quad+6\left(r_{1} r_{2} r_{3}+r_{1} r_{2} r_{4}+\cdots+r_{4} r_{5} r_{6}\right) \\
= & s_{3}+3\left(s_{1} s_{2}-s_{3}\right)+6 a_{3} \\
s_{3}= & \frac{3}{2} s_{1} s_{2}-\frac{1}{2} s_{1}^{3}+3 a_{3}
\end{aligned}
$$

Now let's compare $Q(x)=(x-1)(x-2)(x-4)(x-5)(x-7)(x-8)-(x-3)(x-6)(x-9)$ and $R(x)=(x-1)(x-2)(x-4)(x-5)(x-7)(x-8)$. Let the coefficients of $Q(x)$ be denoted by a_{n} and the coefficients of $R(x)$ be denoted by a_{n}^{\prime}. Also define $s_{1}^{\prime}, s_{2}^{\prime}$, and s_{3}^{\prime} to be the sum of 1 st , 2 nd , and 3 rd powers of roots in $R(x)$, and $r_{1}^{\prime}, \ldots, r_{6}^{\prime}$ to be the roots of $R(x)$ (which are just $1,2,4,5,7,8)$.
We can see that $a_{5}=a_{5}^{\prime}, a_{4}=a_{4}^{\prime}, a_{3}=a_{3}^{\prime}+1$. Note that s_{1} and s_{2} for any sixth degree polynomial only depend on a_{4} and a_{5}. This means $s_{1}=s_{1}^{\prime}, s_{2}=s_{2}^{\prime}$, and subsequently $s_{3}=s_{3}^{\prime}+3$. Now we find the sum in question:

$$
\begin{aligned}
\sum_{i=1}^{6}\left(r_{i}-1\right)\left(r_{i}-2\right)\left(r_{i}-4\right) & =s_{3}+c_{2} s_{2}+c_{1} s_{1}+c_{0} \\
& =3+s_{3}^{\prime}+c_{2} s_{2}^{\prime}+c_{1} s_{1}^{\prime}+c_{0} \\
& =3+\sum_{i=1}^{6}\left(r_{i}^{\prime}-1\right)\left(r_{i}^{\prime}-2\right)\left(r_{i}^{\prime}-4\right) .
\end{aligned}
$$

Now, we simply need to compute this sum over the known roots $1,2,4,5,7,8$. The first 3 roots yield a value of zero inside the sum, so the answer is simply $3+4 \cdot 3 \cdot 1+6 \cdot 5 \cdot 3+7 \cdot 6 \cdot 5=$ 273.
9. Suppose we have a strictly increasing function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$where \mathbb{Z}^{+}denotes the set of positive integers. We also know that both

$$
f(f(1)), f(f(2)), f(f(3)), \ldots
$$

and

$$
f(f(1)+1), f(f(2)+1), f(f(3)+1), \ldots
$$

are arithmetic sequences. Given that $f(1)=1$ and $f(2)=3$, find the maximum value of

$$
\sum_{j=1}^{100} f(j)
$$

Answer: 10000

Solution: We claim that $f(1), f(2), f(3), f(4), \ldots$ is also an arithmetic sequence.
Since f is a strictly increasing function from positive integers to positive integers, $f(x+1)-$ $f(x) \geq 1=(x+1)-x$ for all $x \in \mathbb{Z}^{+}$. Thus, for all $y>x, f(y)-f(x)=f(y)-f(y-1)+$ $f(y-1)+f(y-2)+\cdots+f(x+1)-f(x) \geq y-x$.
Consider the differences $d_{n}=f(n+1)-f(n)$. Note that $d_{n}=f(n+1)-f(n) \leq$ $f(f(n+1))-f(f(n))$ from above and $f(f(n+1))-f(f(n))=D_{1}$ is a constant since $f(f(1)), f(f(2)), f(f(3)), \ldots$ is an arithmetic sequence. Hence, d_{n} is bounded above by D_{1}. Also, since f is a strictly increasing sequence, $d_{n}=f(n+1)-f(n)>0$ for all $n \in \mathbb{Z}^{+}$. Hence, $1 \leq d_{n} \leq D_{1}$ for all $n \in \mathbb{Z}^{+}$. Let m and M be the smallest and largest value of d_{n} over all $n \in \mathbb{Z}^{+}$.
Let the common difference of the second arithmetic sequence $f(f(1)+1), f(f(2)+1), f(f(3)+$ $1), \ldots$ be D_{2}. Now observe that

$$
\begin{aligned}
d_{f(n+1)}-d_{f(n)} & =(f(f(n+1)+1)-f(f(n+1)))-(f(f(n)+1)-f(f(n))) \\
& =f(f(n+1)+1)-f(f(n)+1)-(f(f(n+1))-f(f(n))) \\
& =D_{2}-D_{1}
\end{aligned}
$$

If $D_{2} \neq D_{1}$, then the sequence $d_{f(1)}, d_{f(2)}, d_{f(3)}, \ldots$ is either strictly increasing to $+\infty$ or strictly decreasing to $-\infty$ which is impossible because d_{n} is bounded by 1 and D_{1}. Thus, $D_{2}=D_{1}$ and $d_{f(n)}$ is a constant for all $n \in \mathbb{Z}^{+}$. From now on, call $D_{1}=D_{2}=D$.
Let k and K be such that $d_{k}=m$ and $d_{K}=M$. Hence,

$$
\begin{aligned}
D & =f(f(k+1))-f(f(k)) \\
& =\sum_{j=f(k)}^{f(k+1)-1}(f(j+1)-f(j)) \\
& =d_{f(k+1)-1}+d_{f(k+1)-2}+\cdots+d_{f(k)} \\
& \leq m M
\end{aligned}
$$

since there are $f(k+1)-1-f(k)+1=d_{k}=m$ terms in the summation and each term is at most M. Similarly,

$$
\begin{aligned}
D & =f(f(K+1))-f(f(K)) \\
& =\sum_{j=f(K)}^{f(K+1)-1}(f(j+1)-f(j)) \\
& =d_{f(K+1)-1}+d_{f(K+1)-2}+\cdots+d_{f(K)} \\
& \geq m M
\end{aligned}
$$

since there are $f(K+1)-1-f(K)+1=d_{K}=M$ terms in the summation and each term is at least m.
Thus, $m M \leq D \leq m M$ which means $D=m M$. For this to be achieved, $d_{f(k)}=(f(f(k)+$ 1) $-f(f(k)))=M$ and $d_{f(K)}=(f(f(K)+1)-f(f(K)))=m$. But $d_{f(n)}$ is a constant for all $n \in \mathbb{Z}^{+}$. Hence, $m=M$ and thus d_{n} is constant for all $n \in \mathbb{Z}^{+}$, i.e. $f(1), f(2), f(3), \ldots$ is an arithmetic sequence.

Therefore,

$$
\sum_{j=1}^{100} f(j)=1+3+5+7+\cdots+199=10000
$$

10. Let $\mathbb{R}_{\geq 0}$ be the set of nonnegative real numbers. Consider a continuous function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ which satisfies

$$
f\left(x^{2}\right)+f\left(y^{2}\right)=f\left(\frac{x^{2} y^{2}-2 x y+1}{x^{2}+2 x y+y^{2}}\right)
$$

for x, y positive real numbers with $x y>1$. Given that $f(0)=2019$ and $f(1)=\frac{2019}{2}$, compute $f(3)$.
Answer: 673
Solution: We begin by defining the functions $g(x)=f\left(x^{2}\right)$ so that the original equation becomes

$$
g(x)+g(y)=g\left(\frac{x y-1}{x+y}\right)
$$

for all $x, y \in \mathbb{R}$. The term on the RHS suggests that we define a new function $h(\theta)=g(\cot \theta)$, which makes the equation become

$$
h(\alpha)+h(\beta)=h(\alpha+\beta)
$$

for all $\alpha, \beta \in \mathbb{R}$. This is the Cauchy functional equation, which has the family of solutions $h(\theta)=c \theta$ for some real constant c. Substituting f back in, we get $f\left(\cot ^{2} \theta\right)=c \theta$. We solve $\cot ^{2} \theta_{0}=0$ to get $\theta_{0}=\frac{\pi}{2}+n \pi$ and $\cot ^{2} \theta_{1}=1$ to get $\theta_{1}=\frac{\pi}{4}+n \frac{\pi}{2}$. Note that because f is continuous, θ is restricted to the domain $\left[\frac{k \pi}{2}, \frac{(k+1) \pi}{2}\right]$ for some integer k. Hence, we must have $\left|\theta_{0}-\theta_{1}\right| \leq \frac{\pi}{2}$ and thus, $\left|\frac{\pi}{4}+\frac{n \pi}{2}\right| \leq \frac{\pi}{2}$. So, $n=0$ or -1 . If $n=0$, we see that $\theta_{0}=\frac{\pi}{2}$ and $\theta_{1}=\frac{\pi}{4}$ satisfy the conditions to give us $c=\frac{4038}{\pi}$. Thus, we see that $\theta \in\left[0, \frac{\pi}{2}\right]$, so solving $\cot ^{2} \theta=3$ in this interval gives us $\theta=\frac{\pi}{6}$, and therefore $f(3)=f\left(\cot ^{2} \frac{\pi}{6}\right)=\frac{4038}{\pi} \cdot \frac{\pi}{6}=673$. (If $n=-1$, then $\theta_{0}=-\frac{\pi}{2}, \theta_{1}=-\frac{\pi}{4}$ and $c=\frac{4038}{\pi}$ with $\theta \in\left[-\frac{\pi}{2}, 0\right]$, giving $f(3)=673$ as well.)

