1. Positive integer n has 6 factors including n and 1 . Suppose that the 3 rd largest factor of n, including n, is 55 . Compute n.

Answer: 605

Solution: Since n has 6 factors, n must be written in the form $a b^{2}$ for some primes a, b, as this is the only way to express a number with $(1+1)(2+1)=2 \cdot 3=6$ factors. Because 55 is a factor of n, we must have either $a=5, b=11$ or $a=11, b=5$. Note that in the second case, $n=11 \cdot 5^{2}=275$, which would result in 55 being the 2nd largest factor of n. Hence, we must have $a=5, b=11$, resulting in $x=5 \cdot 11^{2}=605$.
2. How many 5 digit numbers n exist such that each n is divisible by 9 and none of the digits of n are divisible by 9 ?

Answer: 3640

Solution: For each number of digits (e.g. 1-digit numbers, 2-digit numbers, and so on), we consider how many numbers n do not have 0 or 9 as a digit and are divisible by 9 , and how many numbers n do not have 0 or 9 as a digit and are not divisible by 9 .

- For 1 -digit numbers n, there are exactly 8 numbers without a 0 or a 9 , none of which are divisible by 9 . Hence, there are 0 1-digit numbers divisible by 9 and 81 -digit numbers not divisible by 9 .
- For 2 -digit numbers n, any n divisible by 9 can be formed by taking a 1 -digit number m not divisible by 9 and adding the unique digit that will form a number divisible by 9 . The remaining numbers will not be divisible by 9 . Hence, there are 82 -digit numbers divisible by 9 and $7 \cdot 8+0=562$-digit numbers not divisible by 9 .
- For 3 -digit numbers n, we can take any of the 562 -digit numbers not divisible by 9 and add a digit to form a 3 -digit number divisible by 9 . The the remaining numbers will not be divisible by 9 . Hence, there are 563 -digit numbers divisible by 9 , and $7 \cdot 56+8 \cdot 8=4563$-digit numbers not divisible by 9 .
- For 4 -digit numbers n, we can take any of the 4563 -digit numbers not divisible by 9 and add a digit to form a 4 -digit number divisible by 9 . The remaining numbers will not be divisible by 9 . Hence, there are 4564 -digit numbers divisible by 9 , and $7 \cdot 456+8 \cdot 56=36404$-digit numbers not divisible by 9 .
- For 5 -digit numbers n, we can take any of the 36404 -digit numbers not divisible by 9 to form a 5 -digit number divisible by 9 . The remaining numbers will not be divisible by 9 . Hence, there are 36405 -digit numbers are divisible by 9 .

We conclude that there are 3640 numbers which satisfy the problem's conditions.
3. A string t is regular if it consists of $n^{\text {' (' characters followed by } n ') \text { ' characters where } n \geq 1}$ (i.e. '()', "(())", "((()))", etc.). Define $f(s)$ to be the number of ways that we can remove characters from a string s to form a regular string. For example, $f("(())$ " $)=5$, since we can either remove no characters to obtain the regular string " $(())$ ", or we can remove 2 characters 4 different ways to obtain the regular string "()". Compute the sum of $f(s)$ over all strings s of length 10 formed by using '(' and ')' characters.

Answer: 28501

Solution: Rather than computing $f(s)$ for each string s individually, we instead count how many times each regular string appears in a string of length 10 formed by using '(' and ')' characters.

For a regular string t of length $2 n$ where $1 \leq n \leq 5$, we first choose which of the ten positions will contain t 's characters. This can be done in $\binom{10}{2 n}$ ways. The remaining characters can be
assigned in $2^{10-2 n}$ ways, so t is counted $\binom{10}{2 n} 2^{10-2 n}$ times over all possible strings. Summing over all n, we find that the answer is

$$
\binom{10}{2} 2^{8}+\binom{10}{4} 2^{6}+\binom{10}{6} 2^{4}+\binom{10}{8} 2^{2}+\binom{10}{10} 2^{0}=28501 .
$$

