1. A number is formed using the digits $\{2,0,1,8\}$, using all 4 digits exactly once. Note that $0218=218$ is a valid number that can be formed. What is the probability that the resulting number is strictly greater than 2018 ?
Answer: $\frac{11}{24}$
Solution: There are $4!=24$ total possible permutations of the digits $\{2,0,1,8\}$. Next, we count the number of cases where the permutation is greater than 2018. When the leftmost digit is an 8 , the permutation must be greater than 2018 , and there are $3!=6$ such permutations. When the leftmost digit is a 2 , the permutation is not greater than 2018 only when the permutation is 2018 itself, since $0<1<8$. In this case, there are 3 ! $-1=5$ such permutations. Because all other permutations of the digits have a thousands digit which is less than 2 , the desired probability is $\frac{6+5}{24}=\frac{11}{24}$.
2. Let $S(n)$ denote the sum of the digits of the integer n. If $S(n)=2018$, what is the smallest possible value $S(n+1)$ can be?

Answer: 3

Solution: To minimize $S(n+1)$, when we add 1 to n, we should change as many digits possible from 9 to 0 due to the carry. For example, if we have $n=199$, adding 1 gives us $n+1=200$, changing 2 nines to zeros. Since $2018=224 \cdot 9+2$, we can let n be a number starting with the digit 2 followed by 224 nines. Then adding 1 to n gives us the digit 3 followed by 224 zeros. Hence, $S(n+1)=3$.
3. A dice is labeled with the integers $1,2, \ldots, n$ such that it is 2 times as likely to roll a 2 as it is a 1,3 times as likely to roll a 3 as it is a 1 , and so on. Suppose the probability of rolling an odd integer with the dice is $\frac{17}{35}$. Compute n.

Answer: 34

Solution: We first observe that the dice must have an even number of sides. Suppose otherwise. Then the probability of rolling an n, an odd number, is higher than that of rolling $n-1$; the probability of rolling $n-2$ is higher than that of rolling $n-3$, and so on. This would imply that the probability of rolling an odd number is greater than the probability of rolling an even number and thus greater than 0.5 , a contradiction.
Let $n=2 k$. Then, the probability of rolling an odd number is

$$
\begin{aligned}
\frac{17}{35} & =\frac{1+3+5+\cdots+2 k-1}{1+2+3+\cdots+2 k} \\
& =\frac{k^{2}}{2 k(2 k+1) / 2} \\
& =\frac{k}{2 k+1}
\end{aligned}
$$

Hence, we must have $k=17$, and $n=2 k=34$.
4. One of the six digits in the expression $435 \cdot 605$ can be changed so that the product is a perfect square N^{2}. Compute N.

Answer: 495

Solution: We first factorize $435=3 \cdot 5 \cdot 29$ and $605=5 \cdot 11^{2}$. First, suppose that we change 605. In this case, we could change it to be of the form $(3 \cdot 5 \cdot 29) k^{2}$ for some positive integer k. If $k=1$, we clearly cannot change 605 to 435 by only modifying a single digit, and if $k \geq 2$, then this number would have more than 4 digits.

Therefore, we must change 435 so that it is of the form $5 k^{2}$. It must be divisible by 5 , so the last digit must be 0 or 5 . If we change the last digit to a 0 , then we have $430=5 k^{2} \Longrightarrow$ $k^{2}=86$, which is not a perfect square. Therefore, the last digit must remain a 5 , which also implies that k must be odd. Computing $5 k^{2}$ for small odd values of k gives us the three digit numbers $125,245,405,605$, and 845 . The only number that can be formed by changing a single digit of 435 is $405=3^{4} \cdot 5$, so we have $N^{2}=405 \cdot 605=3^{4} \cdot 5^{2} \cdot 11^{2}$. Taking the square root gives us the answer $N=3^{2} \cdot 5 \cdot 11=495$.
5. A sequence is defined as follows. Given a term a_{n}, we define the next term a_{n+1} as

$$
a_{n+1}=\left\{\begin{array}{cc}
\frac{a_{n}}{2} & \text { if } a_{n} \text { is even } \\
a_{n}-1 & \text { if } a_{n} \text { is odd }
\end{array}\right.
$$

The sequence terminates when $a_{n}=1$. Let $P(x)$ be the number of terms in such a sequence with initial term x. For example, $P(7)=5$ because its corresponding sequence is $7,6,3,2,1$. Evaluate $P\left(2^{2018}-2018\right)$.

Answer: 4028

Solution: We convert the number into its binary equivalent. If the number ends with 0 (which means it is even), the next term has the same binary form with the 0 removed. If the number ends with 1 (which means it is odd), the next term has the same binary form with the last digit changed to 0 . Given a number x with a binary representation p, we compute $P(x)$ by summing over the digits in p and obtain

$$
P(x)=(\# \text { of digits in } p)+(\# \text { of } 1 \text { 's in } p)-1 .
$$

The binary representation

$$
2^{2018}-2018=2^{2018}-1-2017=2^{2018}-1-(1+32+64+128+256+512+1024)
$$

consists of 2011 1's and 70 's, so $P(2018)=2018+2011-1=4028$.
6. Elizabeth is at a candy store buying jelly beans. Elizabeth begins with 0 jellybeans. With each scoop, she can increase her jellybean count to the next largest multiple of 30,70 or 110 . (For example, her next scoop after 70 can increase her jellybean count to 90 , 110, or 140). What is the smallest number of jellybeans Elizabeth can collect in more than 100 different ways?
Answer: 210
Solution: Let $J(n)$ be the number of different ways to collect n jellybeans. Note that $J(30 k)$ is the sum of all $J(n)$ where $30(k-1) \leq n<30 k$. A similar thing is true for $J(70 k)$ and $J(110 k)$. We can then compute the following values for $J(n)$:

$$
\begin{aligned}
J(0) & =1 \\
J(30) & =1 \\
J(60) & =1 \\
J(70) & =J(0)+J(30)+J(60)=3 \\
J(90) & =J(60)+J(70)=4 \\
J(110) & =J(0)+J(30)+J(60)+J(70)+J(90)=10 \\
J(120) & =J(90)+J(110)=14 \\
J(140) & =J(70)+J(90)+J(110)+J(120)=31 \\
J(150) & =J(120)+J(140)=45 \\
J(180) & =J(150)=45 \\
J(210) & =J(140)+J(150)+J(180)>100
\end{aligned}
$$

The smallest number is thus 210 .
7. Let S be the set of all 1000 element subsets of the set $\{1,2,3, \ldots, 2018\}$. What is the expected value of the minimum element of a set chosen uniformly at random from S ?
Answer: $\frac{2019}{1001}$
Solution: Note that the minimum element of a subset of size 1000 ranges from 1 to 1019 inclusive. Therefore, for every k satisfying $1 \leq k \leq 1019$, we count how many times it is the minimum value in a subset. From the set $\{k+1, k+2, \ldots, 2018\}$, we must choose 999 additional elements, so there are $\binom{2018-k}{999}$ such subsets. Since there are $\binom{2018}{1000}$ sets in S, our desired expected value is

$$
\frac{\binom{2017}{999}+2\binom{2016}{999}+3\binom{2015}{999}+\cdots+1019\binom{999}{999}}{\binom{2018}{1000}} .
$$

The numerator can be rewritten as

$$
\begin{gathered}
\binom{2017}{999}+\binom{2016}{999}+\binom{2015}{999}+\cdots+\binom{999}{999} \\
+ \\
\binom{2016}{999}+\binom{2015}{999}+\cdots+\binom{999}{999} \\
+ \\
\vdots \\
+ \\
\binom{999}{999}
\end{gathered}
$$

Applying the hockey-stick identity to each line, the expression becomes

$$
\binom{2018}{1000}+\binom{2017}{1000}+\cdots+\binom{1000}{1000}
$$

Using the hockey-stick identity once more, we obtain $\binom{2019}{1001}$. Thus, the expected value is

$$
\frac{\binom{2019}{1001}}{\binom{0018}{1000}}=\frac{\frac{2019!}{1001!\cdot 1018!}}{\frac{2018!}{1000!\cdot 1018!}}=\frac{2019}{1001} .
$$

8. Positive integer n can be written in the form $a^{2}-b^{2}$ for at least 12 pairs of positive integers (a, b). Compute the smallest possible value of n.

Answer: 1440

Solution: Since $n=a^{2}-b^{2}=(a-b)(a+b)$, the values $a-b$ and $a+b$ must have the same parity, otherwise this would imply that both a and b are not integral. Therefore, if n is divisible by 2 , then both $a-b$ and $a+b$ must be divisible by 2 . It suffices to compute the number of factor pairs $(a-b, a+b)$ of n such that $a-b$ and $a+b$ share the same parity, since (a, b) uniquely determines ($a-b, a+b$) and vice versa.
First, suppose that n is divisible by 2 . Let $n=2^{p_{2}} 3^{p_{3}} 5^{p_{5}} \cdots$ for positive p_{2} and some nonnegative integers p_{3}, p_{5}, \ldots. Then, the number of valid factor pairs of n is

$$
\left\lfloor\frac{\left(p_{2}-1\right)\left(p_{3}+1\right)\left(p_{5}+1\right) \cdots}{2}\right\rfloor=12
$$

Here, we take $p_{2}-1$ to account for the equivalent parity of the factor pair, as the exponent of 2 in either integer of the factor pair cannot be 0 or p_{2}. Next, we divide by 2 and take the floor to take into account only valid factor pairs, as opposed to just factors of n.
There are two cases:
(a) $\left(p_{2}-1\right)\left(p_{3}+1\right)\left(p_{5}+1\right) \cdots=24$. After doing some case work, we find that setting $p_{2}-1=4, p_{3}+1=3$, and $p_{5}+1=2$ yields the smallest possible value of n, which is $2^{5} 3^{2} 5^{1}=1440$.
(b) $\left(p_{2}-1\right)\left(p_{3}+1\right)\left(p_{5}+1\right) \cdots=25$. After doing some case work, we find that setting $p_{2}-1=5$ and $p_{3}+1=5$ yields the smallest possible value of n, which is $2^{6} 3^{4}=5184$.

We can repeat the process with n not divisible by 2 , and the number of valid factor pairs of n is instead

$$
\left\lfloor\frac{\left(p_{3}+1\right)\left(p_{5}+1\right) \ldots}{2}\right\rfloor=12
$$

where we do not need to take into account parity since all such n not divisible by 2 are odd. However, we quickly observe that n will be extremely large if it is not divisible by 2 , and we can ignore this case.
Hence, the smallest possible value of n is 1440 .
9. Let

$$
S=\sum_{k=1}^{2018102} \sum_{n=1}^{1008} n^{k} .
$$

Compute the remainder when S is divided by 1009 .
Answer: 16
Solution: Note that $p=1009$ is a prime. We claim that for any fixed prime p and integer k, the sum

$$
\sum_{n=1}^{p-1} n^{k} \quad(\bmod p)
$$

is $-1 \bmod p$ if $(p-1) \mid k$ and $0 \bmod p$ if $(p-1) \nmid k$.
We first consider the case where $(p-1) \mid k$. By Fermat's little theorem, $n^{k} \equiv 1(\bmod p)$ for all $n=1, \ldots, p-1$. Therefore, we have

$$
\sum_{n=1}^{p-1} n^{k} \equiv-1 \quad(\bmod p)
$$

in this case.
Now consider the case where $(p-1) \nmid k$. Because p is prime, there exists some generator g such that $g^{p-1} \equiv 1(\bmod p)$ but $g^{a} \not \equiv 1(\bmod p)$ for all $0<a<p-1$. This implies that for all $1 \leq n \leq p-1$, there exists a unique $1 \leq a \leq p-1$ such that $n \equiv g^{a}(\bmod p)$. Otherwise, if there exists two different a, b such that $g^{a} \equiv g^{b} \equiv n(\bmod p)$, we would have $g^{a-b} \equiv 1$ $(\bmod p)$, which implies that $a-b=0$, or $a=b$. Therefore, we can rewrite the sum as

$$
\sum_{n=1}^{p-1} n^{k} \equiv \sum_{n=1}^{p-1} g^{n k} \quad(\bmod p) .
$$

However, if we multiply the sum by $1-g^{k}$, we find that the sum telescopes, and we get

$$
\left(1-g^{k}\right) \sum_{n=1}^{p-1} g^{n k} \equiv g^{k}-g^{p k} \equiv g^{k}\left(1-\left(g^{p-1}\right)^{k}\right) \equiv 0 \quad(\bmod p)
$$

where $g^{p-1} \equiv 1(\bmod p)$ from Fermat's Little Theorem. However, because $k \nmid p-1$, we know that $g^{k} \not \equiv 1(\bmod p)$, which implies that

$$
\sum_{n=1}^{p-1} n^{k} \equiv 0 \quad(\bmod p)
$$

in this case.
Thus, we have

$$
S \equiv-\left\lfloor\frac{2018102}{1008}\right\rfloor \equiv-2002 \equiv 16 \quad(\bmod p)
$$

10. Morris plays a game using a fair coin. He starts with $\$ 2$ and proceeds using the following rules:

- If Morris flips a heads, he gains $\$ 2$.
- If Morris flips a tails, he loses half his money.
- If Morris flips two tails in a row, the game ends (but he doesn't lose any more money)

For instance, if Morris flips the sequence THTT, he will end up with $\$ 1.50$. What is the expected amount of money in dollars Morris will have after the game ends?

Answer: $\frac{8}{3}$

Solution: Let $f(x)$ be the expected amount of money Morris has at the end of the game if he starts with $\$ x$. We split the original game into two slightly different games, where the winnings of the original game is the sum of the winnings of the two other games.
Game 1: Morris starts the game with $\$ x$.

- If Morris flips a heads, nothing happens.
- If Morris flips a tails, he loses half his money.
- If Morris flips two tails in a row, the game ends (but he doesn't lose any more money)

Game 2: Morris starts the game with $\$ 0$.

- If Morris flips a heads, he gains $\$ 2$.
- If Morris flips a tails, he loses half his money.
- If Morris flips two tails in a row, the game ends (but he doesn't lose any more money)

Intuitively, the first game represents the decay of our original investment of $\$ 2$ by flipping tails, while the second game represents our winnings when we start with $\$ 0$.
We first compute the expected value of game 1 . The probability that we halve exactly once is $\frac{1}{2}$, since that means that we flipped another tails immediately after flipping our first one. Likewise, the probability that we halve exactly twice is $\frac{1}{4}$, and so on, so the probability that we exactly halve k times is $\frac{1}{2^{k}}$. The expected value is therefore

$$
\sum_{k=1}^{\infty} \frac{1}{2^{k}} \cdot \frac{x}{2^{k}}=\sum_{k=1}^{\infty} \frac{x}{4^{k}}=\frac{x}{3}
$$

By definition, the expected value of game 2 is $f(0)$. Thus, the expected value of original the game when we start with $\$ x$ is $f(x)=\frac{x}{3}+f(0)$. Plugging in $x=2$ gives us the equation $f(2)=\frac{2}{3}+f(0)$. On the other hand, consider the case when we start with $\$ 0$. We have a $\frac{1}{2}$ chance of flipping heads and gaining $\$ 2$, which is the same as starting the game again with $\$ 2$. We have a $\frac{1}{4}$ chance of flipping tails and then heads, which is equivalent to the scenario
above. Finally we have a $\frac{1}{4}$ chance of flipping tails twice in a row and ending the game. This gives us the equation $f(0)=\frac{1}{2} f(2)+\frac{1}{4} f(2)+\frac{1}{4} \cdot 0$. Plugging this into the other equation and solving, we get $f(2)=\frac{8}{3}$.

