1. If $f(x)=x^{2}$ and $g(x)=\ln (x)$, compute $f^{\prime}(1)+g^{\prime}(1)$.

Answer: 3
Solution: We compute $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=\frac{1}{x}$, so plugging in 1 for both gives us 3 .
2. Given that $f(x)=x^{2}+a x-17$, find all real values of a such that $f(4)=f^{\prime}(4)$.

Answer: 3
Solution: Differentiating $f(x)$ gives us $f^{\prime}(x)=2 x+a$. Now $f(4)=4 a-1$ and $f^{\prime}(4)=a+8$, so setting the two equal yields $4 a-1=a+8$, which solves to $a=3$.
3. Find the value of a such that

$$
\int_{1}^{a}\left(3 x^{2}-6 x+3\right) d x=27 .
$$

Answer: 4

Solution: We factor the integrand to get

$$
\int_{1}^{a} 3(x-1)^{2} d x=\left.(x-1)^{3}\right|_{1} ^{a}=(a-1)^{3}=27 .
$$

Taking the cube root of both sides yields $a-1=3$ or $a=4$.
4. Compute

$$
\int_{0}^{4} \frac{d x}{\sqrt{|x-2|}}
$$

Answer: $4 \sqrt{2}$

Solution: Note that the function $\frac{1}{\sqrt{|x-2|}}$ is discontinuous at $x=2$. We therefore split the integral into two parts and compute separately:

$$
\begin{aligned}
& \int_{0}^{2} \frac{d x}{\sqrt{|x-2|}}=\int_{0}^{2} \frac{d x}{\sqrt{2-x}}=-\left.2 \sqrt{2-x}\right|_{0} ^{2}=2 \sqrt{2} \\
& \int_{2}^{4} \frac{d x}{\sqrt{|x-2|}}=\int_{2}^{4} \frac{d x}{\sqrt{x-2}}=\left.2 \sqrt{x-2}\right|_{2} ^{4}=2 \sqrt{2}
\end{aligned}
$$

The answer is therefore $2 \sqrt{2}+2 \sqrt{2}=4 \sqrt{2}$.
5. Eric and Harrison are standing in a field, and Eric is 400 feet directly East of Harrison. Eric starts to walk North at a rate of 4 feet per second, while Harrsion starts to walk South at the same time at a rate of 6 feet per second. After 30 seconds, at what rate is the distance between Eric and Harrison changing?
Answer: 6
Solution: We can model the rate of a change as a right triangle with base $x=400$ feet and height y increasing at a rate of 10 feet per second. After 30 seconds, we will have $y=300$ feet. If we let z denote the distance between Eric and Harrison, then z is the hypotenuse of the right triangle, giving us the relation $z^{2}=x^{2}+y^{2}$. Thus, the distance between Eric and Harrison after 30 seconds is $z=500$ feet. Differentiating both sides also yields $2 z \cdot z^{\prime}=2 x \cdot x^{\prime}+2 y \cdot y^{\prime}$. Plugging in our values, we get $2 \cdot 500 z^{\prime}=2 \cdot 400 \cdot 0+2 \cdot 300 \cdot 10$, which gives us $z^{\prime}=6$ feet per second.
6. Compute

$$
\lim _{x \rightarrow 0} \frac{(1-\cos x)^{2}}{x^{2}-x^{2} \cos ^{2} x}
$$

Answer: $\frac{1}{4}$

Solution: Factoring out the x^{2} from the denominator and recalling that $\sin ^{2} x+\cos ^{2} x=1$, our limit becomes

$$
\lim _{x \rightarrow 0} \frac{(1-\cos x)^{2}}{x^{2} \sin ^{2} x}=\left(\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}\right)^{2}
$$

Note that the limit is in an indeterminate form $0 / 0$ when we plug in $x=0$, so we apply L'Hopital's rule to get

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}=\lim _{x \rightarrow 0} \frac{\sin x}{\sin x+x \cos x}
$$

Plugging in $x=0$ still gives us the indeterminate form $0 / 0$, so we apply L'Hopital's rule again to get

$$
\lim _{x \rightarrow 0} \frac{\sin x}{\sin x+x \cos x}=\lim _{x \rightarrow 0} \frac{\cos x}{\cos x+\cos x-x \sin x} .
$$

Plugging in $x=0$ here gives us $\frac{1}{2}$. Therefore, our answer is $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$.
7. Compute

$$
\int_{-2}^{0} \frac{x^{3}+4 x^{2}+7 x-20}{x^{2}+4 x+8} d x+\int_{0}^{2} \frac{2 x^{3}-7 x^{2}+9 x-10}{x^{2}+4} d x .
$$

Answer: 12

Solution: The polynomials in the denominator are similar, so we rewrite them in the form

$$
\int_{-2}^{0} \frac{x^{3}+4 x^{2}+7 x-20}{(x+2)^{2}+4} d x+\int_{0}^{2} \frac{2 x^{3}-7 x^{2}+9 x-10}{x^{2}+4} d x .
$$

This suggests we make the u-substution $u=x+2$ in the first integral, which gives us

$$
\int_{0}^{2} \frac{(u-2)^{3}+4(u-2)^{2}+7(u-2)-20}{u^{2}+4} d u+\int_{0}^{2} \frac{2 x^{3}-7 x^{2}+9 x-10}{x^{2}+4} d x
$$

which simplifies down to

$$
\int_{0}^{2} \frac{u^{3}-2 u^{2}+3 u-26}{u^{2}+4} d u+\int_{0}^{2} \frac{2 x^{3}-7 x^{2}+9 x-10}{x^{2}+4} d x .
$$

We can then combine the two integrals into a single integral and combine like terms to get

$$
\int_{0}^{2} \frac{3 x^{3}-9 x^{2}+12 x-36}{x^{2}+4} d x=\int_{0}^{2}(3 x-9) d x=\left.\left(\frac{3}{2} x^{2}-9 x\right)\right|_{0} ^{2}=\frac{3}{2}\left(2^{2}\right)-9 \cdot 2=\boxed{-12} .
$$

8. Compute

$$
\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1 / n} x^{2018 x+1} d x
$$

Answer: $\frac{1}{2}$

Solution: The key to evaluating this limit is to approximate the limit with a simpler integral. In particular, notice that $x^{x} \rightarrow 1$ as $x \rightarrow 0$. This suggests that we can approximate the integrand using $x^{2018 x}=\left(x^{x}\right)^{2018} \approx 1$ to get

$$
\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1 / n} x^{2018 x+1} d x=\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1 / n} x d x
$$

The integral then evaluates to $\int_{0}^{1 / n} x d x=\frac{1}{2 n^{2}}$. Plugging this back into the limit gives us the answer $\frac{1}{2}$.
To prove this claim rigorously, let $\epsilon>0$. Because $\lim _{x \rightarrow 0} x^{2018 x}=1$, there exists some $\delta>0$ such that $\left|x^{2018 x}-1\right|<\epsilon$ for all $0<x<\delta$. Now consider the integral

$$
n^{2} \int_{0}^{1 / n} x^{2018 x+1}-x d x
$$

Armed with our approximation, so long as $0<\frac{1}{n}<\delta$, or $n>\frac{1}{\delta}$, we have

$$
\begin{aligned}
\left|n^{2} \int_{0}^{1 / n} x^{2018 x+1}-x d x\right| & =\left|n^{2} \int_{0}^{1 / n} x\left(x^{2018 x}-1\right) d x\right| \\
& \leq n^{2} \int_{0}^{1 / n} x\left|x^{2018 x}-1\right| d x \\
& <n^{2} \int_{0}^{1 / n} \epsilon \cdot x d x \\
& =\frac{\epsilon}{2}
\end{aligned}
$$

where we have used the facts that the function x is non-negative on the interval $[0,1 / n]$.
We have already shown above that $n^{2} \int_{0}^{1 / n} x d x=\frac{1}{2}$, so for all $n>\frac{1}{\delta}$ we have

$$
\left|n^{2} \int_{0}^{1 / n} x^{2018 x+1} d x-\frac{1}{2}\right|<\frac{\epsilon}{2}
$$

This is precisely the definition of a limit, so we conclude that the limit does exist and approaches | $\frac{1}{2}$ |
| :---: |
| as claimed above. |

9. Compute

$$
\int_{0}^{\pi} \frac{2 x \sin x}{3+\cos 2 x} d x .
$$

Answer: $\frac{\pi^{2}}{4}$
Solution: Let

$$
I=\int_{0}^{\pi} \frac{2 x \sin x}{3+\cos 2 x} d x
$$

We first use the identity $\cos 2 x=2 \cos ^{2} x-1$ to reduce the integral into the form

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

Next, we consider the substitution $x \mapsto \pi-y$. The integral then becomes

$$
\int_{0}^{\pi} \frac{(\pi-y) \sin y}{1+\cos ^{2} y} d y
$$

Adding the two integrals together, we get

$$
2 I=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x
$$

This gives us the simpler

$$
I=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x
$$

Now use the substitution $u=\cos x$ to get

$$
-\frac{\pi}{2} \int_{1}^{-1} \frac{1}{1+u^{2}} d u
$$

This is the standard $\tan ^{-1} u$ integral, so we have

$$
I=\frac{\pi}{2}\left(\tan ^{-1}(1)-\tan ^{-1}(-1)\right)=\frac{\pi}{2}\left(\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right)=\frac{\pi^{2}}{4} .
$$

10. Fact: The value $\ln (2)$ is not the root of any polynomial with rational coefficients.

For any nonnegative integer n, let $p_{n}(x)$ be the unique polynomial with integer coefficients such that

$$
p_{n}(\ln (2))=\int_{1}^{2}(\ln (x))^{n} d x .
$$

Compute the value of the sum

$$
\sum_{n=0}^{\infty} \frac{1}{p_{n}(0)}
$$

Answer: $\frac{1}{e}$
Solution: We first attempt to compute the integral $p_{n}(\ln (2))=\int_{1}^{2}(\ln (x))^{n} d x$. Using integration by parts with $u=(\ln (x))^{n}$ and $d v=1$, we get

$$
\begin{aligned}
\int_{1}^{2}(\ln (x))^{n} d x & =\left.x(\ln (x))^{n}\right|_{1} ^{2}-\int_{1}^{2} n(\ln (x))^{n-1} d x \\
& =2(\ln (2))^{n}-n \int_{1}^{2}(\ln (x))^{n-1} d x \\
& =2(\ln (2))^{n}-n p_{n-1}(\ln (2))
\end{aligned}
$$

Because $\ln (2)$ is not the root of any polynomial with rational coefficients, we can plug in $x=\ln (2)$ to get the recurrence

$$
p_{n}(x)=2 x^{n}-n p_{n-1}(x) .
$$

Recall that we are only concerned with the constant terms $p_{n}(0)$, so plugging in $x=0$ yields

$$
p_{n}(0)=-n p_{n-1}(0) .
$$

Now since

$$
p_{0}(\ln (2))=\int_{1}^{2} d x=1,
$$

we have $p_{0}(x)=1$, and therefore $p_{0}(0)=1$. From the recurrence, we deduce that

$$
p_{n}(0)=(-1)^{n} \cdot n!
$$

Our desired sum is thus

$$
\sum_{n=0}^{\infty} \frac{1}{p_{n}(0)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=\frac{1}{e}
$$

from the Taylor series expansion of e^{x} at $x=-1$.

