1. If a, b, c are real numbers with $a-b=4$, find the maximum value of $a c+b c-c^{2}-a b$.

Answer: 4
Solution: We have

$$
\begin{aligned}
a c+b c-c^{2}-a b & =(a-c)(c-b) \\
& =(\sqrt{(a-c)(c-b)})^{2} \\
& \leq\left(\frac{(a-c)+(c-b)}{2}\right)^{2} \\
& =\left(\frac{a-b}{2}\right)^{2} \\
& =\left(\frac{4}{2}\right)^{2} \\
& =4
\end{aligned}
$$

The maximum is attained when $a=4, b=0$, and $c=2$.
2. If $\frac{1}{x}+\frac{1}{y}=\frac{1}{2}$ and $\frac{1}{x+1}+\frac{1}{y+1}=\frac{3}{8}$, compute $\frac{1}{x-1}+\frac{1}{y-1}$.

Answer: $\frac{11}{14}$
Solution: With two equations and two unknowns, we can solve for the expressions $a=x y$ and $b=x+y$. The first equation can be written as

$$
\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x y}=\frac{b}{a}=\frac{1}{2}
$$

which implies that $a=2 b$. Similarly, from the second equation we have

$$
\frac{1}{x+1}+\frac{1}{y+1}=\frac{(x+y)+2}{x y+(x+y)+1}=\frac{b+2}{a+b+1}=\frac{3}{8}
$$

which implies that $8(b+2)=3(a+b+1)$, or $3 a-5 b=13$. Solving the system of equations gives us $a=26$ and $b=13$. Therefore, we have

$$
\frac{1}{x-1}+\frac{1}{y-1}=\frac{(x+y)-2}{x y-(x+y)+1}=\frac{b-2}{a-b+1}=\frac{11}{14} .
$$

3. Let F_{n} denote the n-th term of the Fibonacci sequence defined recursively as $F_{1}=F_{2}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. Compute the sum

$$
\sum_{n=1}^{\infty} \frac{F_{n}}{2^{n}}
$$

Answer: 2

Let S be the desired sum. Note that

$$
\begin{aligned}
S-\frac{S}{2} & =\sum_{n=1}^{\infty} \frac{F_{n}}{2^{n}}-\sum_{n=1}^{\infty} \frac{F_{n}}{2^{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{F_{n}}{2^{n}}-\sum_{n=2}^{\infty} \frac{F_{n-1}}{2^{n}} \\
& =\frac{F_{1}}{2}+\frac{F_{2}}{4}+\sum_{n=3}^{\infty} \frac{F_{n}}{2^{n}}-\frac{F_{1}}{4}-\sum_{n=3}^{\infty} \frac{F_{n-1}}{2^{n}} \\
& =\frac{1}{2}+\sum_{n=3}^{\infty} \frac{F_{n-2}}{2^{n}} \\
& =\frac{1}{2}+\frac{1}{4} \sum_{n=1}^{\infty} \frac{F_{n}}{2^{n}} \\
& =\frac{1}{2}+\frac{S}{4}
\end{aligned}
$$

Therefore, we have $\frac{S}{2}=\frac{1}{2}+\frac{S}{4}$, which solves to $S=2$.

