1. At the grocery store, 3 avocados and 2 pineapples cost $\$ 8.80$, while 5 avocados and 3 pineapples cost $\$ 14.00$. How much do 1 avocado and 1 pineapple cost in dollars?

Answer: 3.60

Solution: Since 3 avocados and 2 pineapples cost $\$ 8.80,6$ avocados and 4 pineapples cost $\$ 17.60$. Subtracting away the cost of 5 avocados and 3 pineapples, we have that 1 avocado and 1 pineapple cost $17.60-14.00=3.60$ dollars.
2. Let a, b, c, d be an increasing sequence of numbers such that a, b, c forms a geometric sequence and b, c, d forms an arithmetic sequence. Given that $a=8$ and $d=24$, what is b ?

Answer: 12

Solution: Let r be the common ratio so that $b=a r$ and $c=a r^{2}$. Then $d-c=c-b$ or $d=2 c-b=2 a r^{2}-a r$. Plugging in the values for a and d, we get the quadratic $16 r^{2}-8 r-24=0$. Factoring, we get $8(r+1)(2 r-3)=0$. Because the sequence is increasing, r must be positive, so $r=\frac{3}{2}$. Therefore, the answer is $b=8 \cdot \frac{3}{2}=12$.
3. Given that the roots of the polynomial $x^{3}-7 x^{2}+13 x-7=0$ are r, s, t, compute the value of $\frac{1}{r}+\frac{1}{s}+\frac{1}{t}$.

Answer: $\frac{13}{7}$

Solution 1: Vieta's formulas give us the relations $r+s+t=7, r s+s t+r t=13$ and $r s t=7$. If we write the fraction over a single denominator, we find

$$
\frac{1}{r}+\frac{1}{s}+\frac{1}{t}=\frac{r s+s t+r t}{r s t}=\frac{13}{7} .
$$

Solution 2: Notice that we can factorize $x^{3}-7 x^{2}+13 x-7$ into $(x-1)\left(x^{2}-6 x+7\right)$. The roots are therefore $1,3 \pm \sqrt{2}$, allowing us to compute

$$
\frac{1}{r}+\frac{1}{s}+\frac{1}{t}=\frac{1}{1}+\frac{1}{3+\sqrt{2}}+\frac{1}{3-\sqrt{2}}=1+\frac{3-\sqrt{2}+3+\sqrt{2}}{9-2}=\frac{13}{7} .
$$

4. Find all possible pairs of integers (m, n) which satisfy $m^{2}+2 m-35=2^{n}$.

Answer: $(9,6),(-11,6)$
Solution: Factoring, we have $(m+7)(m-5)=2^{n}$. We observe that $m+7$ and $m-5$ are 12 apart, and also observe that the only powers of 2 which differ by 12 are 4 and 16 , so $n=2+4=6$. There are two cases:
(a) $m+7=16$ and $m-5=4$, which gives us $m=9$.
(b) $m+7=-4$ and $m-5=-16$, which gives us $m=-11$.

The answer is therefore $(9,6),(-11,6)$.
5. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots$ be a geometric progression with positive ratio such that $a_{1}>1$ and $\left(a_{1357}\right)^{3}=a_{34}$. Find the smallest integer n such that $a_{n}<1$.
Answer: 2019
Solution: Let r be the ratio between the terms. The n-th term of the sequence can therefore be written as $a_{n}=a_{1} r^{n-1}$. This allows us to write

$$
\left(a_{1357}\right)^{3}=a_{34} \Rightarrow\left(a_{1} r^{1356}\right)^{3}=a_{1} r^{33} \Rightarrow a_{1}^{2} r^{4035}=1 .
$$

Since $a_{1}>1$, we must have $0<r<1$, so the geometric progression is decreasing. However, the above equation also gives

$$
a_{1}^{2} r^{4035}=\left(a_{1} r^{2017}\right)\left(a_{1} r^{2018}\right)=a_{2018} a_{2019}=1 .
$$

Because the sequence is decreasing, we must have $a_{2018}>1>a_{2019}$, which gives us the answer 2019.
6. Let $a_{k}= \pm 1$ for all integers $1 \leq k \leq 2018$. The sum

$$
\sum_{1 \leq i<j \leq 2018} a_{i} a_{j}
$$

can take on both positive and negative values. Find the smallest positive value of the sum.
Answer: 49
Solution: Observe that:

$$
\begin{aligned}
2 \sum_{1 \leq i<j \leq 2018} a_{i} a_{j} & =\left(a_{1}+a_{2}+\ldots+a_{2018}\right)^{2}-\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{2018}^{2}\right) \\
& =\left(a_{1}+a_{2}+\ldots+a_{2018}\right)^{2}-2018
\end{aligned}
$$

Because $a_{k}= \pm 1$, we know that $a_{1}+a_{2}+\ldots+a_{2018}$ is an integer between -2018 and 2018 inclusive. Furthermore, there are an even number of terms, each of which is odd, so this sum is even.
Therefore, the minimum positive integer value of $\left(a_{1}+a_{2}+\ldots+a_{2018}\right)^{2}-2018$ is $46^{2}-2018=$ 98 , obtained when $a_{1}+a_{2}+\ldots+a_{2018}= \pm 46$. This can be attained when $a_{1}=a_{2}=\ldots=$ $a_{46}=1$ and the rest of the terms $a_{47}, a_{48}, \ldots, a_{2018}$ contain an equal number of 1 's and -1 's.
Therefore, the least positive value is $\frac{98}{2}=49$.
7. Let x, y, z be non-negative real numbers satisfying $x y z=\frac{2}{3}$. Compute the minimum value of

$$
x^{2}+6 x y+18 y^{2}+12 y z+4 z^{2} .
$$

Answer: 18

Solution: We first complete the square and rewrite our equation as

$$
(x+3 y)^{2}+(3 y+2 z)^{2} .
$$

We then substitute $a=x, b=3 y$, and $c=2 z$ to minimize the equivalent sum

$$
(a+b)^{2}+(b+c)^{2}
$$

under the condition $a b c=6 x y z=4$. Applying AM-GM gives us

$$
(a+b)^{2}+(b+c)^{2} \geq 2(a+b)(b+c) .
$$

We can apply AM-GM again to $a+b$ and $b+c$ individually via

$$
\begin{aligned}
& a+b=\frac{a}{2}+\frac{a}{2}+b \geq 3 \sqrt[3]{\frac{a^{2} b}{4}} \\
& b+c=b+\frac{c}{2}+\frac{c}{2} \geq 3 \sqrt[3]{\frac{b c^{2}}{4}}
\end{aligned}
$$

to get

$$
(a+b)^{2}+(b+c)^{2} \geq 2(a+b)(b+c) \geq 18 \sqrt[3]{\frac{(a b c)^{2}}{16}}=18
$$

Note that equality holds when $a=2 b=c$, so $a=c=2$, and $b=1$, or equivalently when $x=2, y=\frac{1}{3}$, and $z=1$.
8. Define $\{x\}=x-\lfloor x\rfloor$, where $\lfloor x\rfloor$ denotes the largest integer not exceeding x. If $|x| \leq 8$, find the number of real solutions to the equation

$$
\{x\}+\left\{x^{2}\right\}=1
$$

Answer: 113
Solution: Since $\{x\}+\left\{x^{2}\right\}=1$, the value x must satisfy $x+x^{2}=n$ for some integer n. The quadratic equation then gives us

$$
x=\frac{-1 \pm \sqrt{1+4 n}}{2} .
$$

If we consider when $0 \leq x \leq 8$, then we must have $\frac{-1+\sqrt{1+4 n}}{2} \leq 8$. Solving the inequality, we find that x satisfies the equation when $0 \leq n \leq 72$, giving us 73 possibilities. Likewise, when $-8 \leq x<0$, we must have $\frac{-1-\sqrt{1+4 n}}{2} \geq-8$, which has solutions when $0 \leq n \leq 56$, for a total of 57 possibilities.
Since $\{x\}+\left\{x^{2}\right\}<2$, we must also eliminate the cases when $\{x\}+\left\{x^{2}\right\}=0$, which happens only when $-8 \leq x \leq 8$ is an integer, for a total of 17 possibilities.
Therefore, the total number of solutions is $73+57-17=113$.
9. Let (a, b, c, d, e) be an integer solution to the system of equations

$$
\begin{aligned}
a+d & =12 \\
b+a d+e & =57 \\
c+b d+a e & =134 \\
c d+b e & =156 \\
c e & =72
\end{aligned}
$$

Find all possible values of $b+d$.
Answer: 18, 21, 25
Solution: After much careful consideration, we notice that the first, second, and third equations contain a, b, c, the second, third, and fourth equations contain $a d, b d, c d$, and the third, fourth, and fifth equations contain $a e, b e, c e$. We also have d and e terms. This suggests that the system of equations was constructed somehow using the product

$$
(1+a+b+c)(1+d+e) .
$$

This looks suspiciously like the factorization of the polynomial

$$
\left(x^{3}+a x^{2}+b x+c\right)\left(x^{2}+d x+e\right) .
$$

In fact, if we expand this polynomial, we get the (semi-magical)

$$
x^{5}+(a+d) x^{4}+(b+a d+e) x^{3}+(c+b d+a e) x^{2}+(c d+b e) x+c e .
$$

Plugging our values in from our system of equations, we realize that the desired solutions are the different factorizations of the polynomial

$$
x^{5}+12 x^{4}+57 x^{3}+134 x^{2}+156 x+72=(x+2)^{3}(x+3)^{2}
$$

into the product of a cubic and a quadratic. We can do this in three ways, leading to the solutions

$$
\begin{aligned}
{\left[(x+2)^{3}\right]\left[(x+3)^{2}\right]=\left(x^{3}+6 x^{2}+12 x+8\right)\left(x^{2}+6 x+9\right) } & \Longrightarrow(6,12,8,6,9) \\
{\left[(x+2)^{2}(x+3)\right][(x+2)(x+3)]=\left(x^{3}+7 x^{2}+16 x+12\right)\left(x^{2}+5 x+6\right) } & \Longrightarrow(7,16,12,5,6) \\
{\left[(x+2)(x+3)^{2}\right]\left[(x+2)^{2}\right]=\left(x^{3}+8 x^{2}+21 x+18\right)\left(x^{2}+4 x+4\right) } & \Longrightarrow(8,21,18,4,4)
\end{aligned}
$$

Therefore, the three possible values of $b+d$ are $18,21,25$.
10. Let a_{1}, \ldots, a_{2018} be the roots of the polynomial

$$
x^{2018}+x^{2017}+\cdots+x^{2}+x-1345=0
$$

Compute

$$
\sum_{n=1}^{2018} \frac{1}{1-a_{n}}
$$

Answer: 3027
Solution: We begin by defining $b_{n}=\frac{1}{1-a_{n}}$. Rearranging gives us $a_{n}=\frac{b_{n}-1}{b_{n}}$. Since we know $-1346+\sum_{k=0}^{2018} a_{n}^{k}=0$ for all $1 \leq n \leq 2018$, we can substitute b_{n} in to get a new polynomial

$$
\sum_{k=0}^{2018}\left(\frac{b_{n}-1}{b_{n}}\right)^{k}-1346=0 \Longrightarrow \sum_{k=0}^{2018}\left(b_{n}\right)^{2018-k}\left(b_{n}-1\right)^{k}-1346 b_{n}^{2018}=0
$$

where we have multiplied both sides by b_{n}^{2018} which is nonzero because $a_{n} \neq 1$. This is true for all $1 \leq n \leq 2018$, so b_{n} are in fact the roots of the polynomial

$$
\sum_{k=0}^{2018} x^{2018-k}(x-1)^{k}-1346 x^{2018}=0
$$

By Vieta's it is enough to calculate the coefficients of x^{2018} and x^{2017} in the polynomial to compute the sum of the roots. We see that the coefficient of x^{2018} is $2019-1346=673$ and the coefficient of x^{2017} is $-1-2-\cdots-2018=-\frac{2018 \cdot 2019}{2}$, which gives us the answer $\frac{2018 \cdot 2019}{2 \cdot 673}=3027$.

