1. A square $ABCD$ with side length 1 is inscribed in a circle. A smaller square lies in the circle with two vertices lying on segment AB and the other two vertices lying on minor arc AB. Compute the area of the smaller square.

Answer: $\frac{1}{25}$

Solution: A simple sketch reveals that the side length of the smaller square, x, must satisfy:

$$\left(\frac{x}{2}\right)^2 + \left(x + \frac{1}{2}\right)^2 = \left(\frac{1}{\sqrt{2}}\right)^2$$

by the Pythagorean theorem. Thus the area is $x^2 = \frac{1}{25}$.

2. Let ABC be a triangle with sides $AB = 19$, $BC = 21$ and $AC = 20$. Let ω be the incircle of ABC with center I. Extend BI so that it intersects AC at E. If ω is tangent to AC at the point D, then find the length of DE.

Answer: $\frac{1}{2}$

Solution: Since I is the incenter, we know that BE is the angle bisector of $\angle ABC$. By the angle bisector theorem, $\frac{19}{21} = \frac{AB}{AC} = \frac{AE}{EC}$. Plus we have the fact that $AE + CE = AC = 20$, so $AE = \frac{19}{2}$.

Because D is the point of tangency, we also know that $AD = s - BC$, where $s = \frac{AB + BC + AC}{2}$. Note though that this means that $s = 30$. This implies that $AD = 9$. Finally, $DE = A\hat{E} - AD = \frac{19}{2} - 9 = \frac{1}{2}$.

3. Circle O has three chords, AD, DF, and EF. Point E lies along the arc AD. Point C is the intersection of chords AD and EF. Point B lies on segment AC such that $EB = EC = 8$. Given $AB = 6$, $BC = 10$, and $CD = 9$, find DF.

Answer: $\frac{9\sqrt{10}}{2}$

Solution: Using power of a point, $AC \cdot CD = EC \cdot CF$ so $CF = 16 \cdot \frac{9}{8} = 18$. Using the Law of Cosines we can find the measure of angle ECB, which is congruent to angle DCF, $8^2 = 8^2 + 10^2 - 2 \cdot 8 \cdot 10 \cos \theta$. Hence $\cos \theta = 5/8$ and $DF^2 = 9^2 + 18^2 - 2 \cdot 9 \cdot 18 \cos \theta = 405/2$ yielding the answer $DF = \frac{9\sqrt{10}/2}{2}$.
