1. A square ABCD with side length 1 is inscribed in a circle. A smaller square lies in the circle with two vertices lying on segment \overline{AB} and the other two vertices lying on minor arc \overrightarrow{AB} . Compute the area of the smaller square.

Answer: $\frac{1}{25}$

Solution: A simple sketch reveals that the side length of the smaller square, x, must satisfy:

$$\left(\frac{x}{2}\right)^2 + \left(x + \frac{1}{2}\right)^2 = \left(\frac{1}{\sqrt{2}}\right)^2$$

by the Pythagorean theorem. Thus the area is $x^2 = \frac{1}{25}$

2. Let ABC be a triangle with sides AB = 19, BC = 21 and AC = 20. Let ω be the incircle of ABC with center I. Extend BI so that it intersects AC at E. If ω is tangent to AC at the point D, then find the length of DE.

Answer: $\frac{1}{2}$

Solution: Since *I* is the incenter, we know that *BE* is the angle bisector of $\angle ABC$. By the angle bisector theorem, $\frac{19}{21} = \frac{AB}{AC} = \frac{AE}{EC}$. Plus we have the fact that AE + CE = AC = 20, so $AE = \frac{19}{2}$.

Because *D* is the point of tangency, we also know that AD = s - BC, where $s = \frac{AB + BC + AC}{2}$. Note though that this means that s = 30. This implies that AD = 9. Finally, $DE = AE - AD = \frac{19}{2} - 9 = \boxed{\frac{1}{2}}$.

3. Circle O has three chords, AD, DF, and EF. Point E lies along the arc AD. Point C is the intersection of chords AD and EF. Point B lies on segment AC such that EB = EC = 8. Given AB = 6, BC = 10, and CD = 9, find DF.

Answer: $\frac{9\sqrt{10}}{2}$

Solution: Using power of a point, $AC \cdot CD = EC \cdot CF$ so $CF = 16 \cdot \frac{9}{8} = 18$. Using the Law of Cosines we can find the measure of angle ECB, which is congruent to angle DCF, $8^2 = 8^2 + 10^2 - 2 \cdot 8 \cdot 10 \cos \theta$. Hence $\cos \theta = 5/8$ and $DF^2 = 9^2 + 18^2 - 2 \cdot 9 \cdot 18 \cos \theta = 405/2$ yielding the answer $DF = \boxed{9\sqrt{10}/2}$.