1. A square $A B C D$ with side length 1 is inscribed in a circle. A smaller square lies in the circle with two vertices lying on segment $\overline{A B}$ and the other two vertices lying on minor arc $\widehat{A B}$. Compute the area of the smaller square.
Answer: $\frac{1}{25}$
Solution: A simple sketch reveals that the side length of the smaller square, x, must satisfy:

$$
\left(\frac{x}{2}\right)^{2}+\left(x+\frac{1}{2}\right)^{2}=\left(\frac{1}{\sqrt{2}}\right)^{2}
$$

by the Pythagorean theorem. Thus the area is $x^{2}=\frac{1}{25}$.
2. Let $A B C$ be a triangle with sides $A B=19, B C=21$ and $A C=20$. Let ω be the incircle of $A B C$ with center I. Extend $B I$ so that it intersects $A C$ at E. If ω is tangent to $A C$ at the point D, then find the length of $D E$.
Answer: $\frac{1}{2}$
Solution: Since I is the incenter, we know that $B E$ is the angle bisector of $\angle A B C$. By the angle bisector theorem, $\frac{19}{21}=\frac{A B}{A C}=\frac{A E}{E C}$. Plus we have the fact that $A E+C E=A C=20$, so $A E=\frac{19}{2}$.
Because D is the point of tangency, we also know that $A D=s-B C$, where $s=\frac{A B+B C+A C}{2}$. Note though that this means that $s=30$. This implies that $A D=9$. Finally, $D E=A \stackrel{2}{E}-A D=$ $\frac{19}{2}-9=\frac{1}{2}$.
3. Circle O has three chords, $A D, D F$, and $E F$. Point E lies along the arc $A D$. Point C is the intersection of chords $A D$ and $E F$. Point B lies on segment $A C$ such that $E B=E C=8$. Given $A B=6, B C=10$, and $C D=9$, find $D F$.

Answer: $\frac{9 \sqrt{10}}{2}$
Solution: Using power of a point, $A C \cdot C D=E C \cdot C F$ so $C F=16 \cdot \frac{9}{8}=18$. Using the Law of Cosines we can find the measure of angle $E C B$, which is congruent to angle $D C F$, $8^{2}=8^{2}+10^{2}-2 \cdot 8 \cdot 10 \cos \theta$. Hence $\cos \theta=5 / 8$ and $D F^{2}=9^{2}+18^{2}-2 \cdot 9 \cdot 18 \cos \theta=405 / 2$ yielding the answer $D F=9 \sqrt{10} / 2$.

