1. There is a circular table with 6 chairs. Alice, Bob, and Eve each pick a random chair to sit down in. Compute the probability that each person is sitting next to two empty chairs.
Answer: $\frac{1}{10}$
Solution: If Alice picks a seat at random to sit down in, Bob then has probability $\frac{2}{5}$ of sitting down in a valid seat (since if he sits directly across from Alice, Eve will be forced to sit next to one of them), and Eve then has probability $\frac{1}{4}$ of sitting down in a valid seat, for a probability of $\frac{1}{10}$.
2. $A B C D E F$ is a regular hexagon, and diagonal $A C$ has length 6 . Find the area of hexagon $A B C D E F$.

Answer: 18 $\sqrt{3}$

Solution: Let M be the midpoint of $A C$. Then $A B M$ is a $30-60-90$ right triangle. Since $A M=3, A B=2 \sqrt{3}$, so the area of an equilateral triangle with side length $A B$ is $(2 \sqrt{3})^{2} \cdot \frac{\sqrt{3}}{4}=$ $3 \sqrt{3}$. Hexagon $A B C D E F$ is composed of six such triangles, for a total area of $18 \sqrt{3}$.
3. Let n be the number which consists of the first 2014 positive integers concatenated together. Let $f(x)$ be the sum of the digits of x, and let $g(x)$ be the value obtained by applying f repeatedly to x until it converges to a single value. Compute $g(n)$.

Answer: 1

Solution: Two integers are equivalent mod some integer k if they have the same remainder upon division by k . Note that $g(x)$ is equivalent to $f(x)(\bmod 9)$. Furthermore, $f(x)$ should converge to a single-digit number. Since the sum of the digits $1-9$ is $0(\bmod 9)$, the sum of the digits of the numbers $1-999$ is also $0(\bmod 9)$ and the sum of the digits of the numbers $1000-1999$ is $1000 \equiv 1(\bmod 9)$. Finally, we can calculate that the sum of the digits of the numbers $2000-2014$ is $0(\bmod 9)$. Thus, the sum of the digits of n is $1(\bmod 9)$, and since a number $\bmod 9$ is equivalent to the sum of its digits $\bmod 9$, it follows that $g(x)=1$.

