1. Given that $8 x+y \leq 17$ and $2 x+7 y \leq 13$, compute the maximum possible value of $x+y$.

Answer: $\frac{88}{27}$
Solution: From the two inequalities, it is always the case that $x+y \leq \frac{88}{27}$. We note that this is realizable by the point $\left(\frac{53}{27}, \frac{35}{27}\right)$, so the answer is $\frac{88}{27}$.
2. Evaluate

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{-2}{5}\right)^{\lfloor\sqrt{n}\rfloor}}{\sqrt{n}+\sqrt{n+1}}
$$

## Answer: $\frac{5}{7}$

Solution: We assume without proof that $\sum_{n=0}^{\infty} \frac{\left(\frac{-2}{5}\right)^{\lfloor\sqrt{n}\rfloor}}{\sqrt{n}+\sqrt{n+1}}=\sum_{n=0}^{\infty} \sum_{i=n^{2}}^{(n+1)^{2}-1} \frac{\left(\frac{-2}{5}\right)^{\lfloor\sqrt{i}\rfloor}}{\sqrt{i}+\sqrt{i+1}}$.
The purpose of this assumption is to group together consecutive terms with the same sign. From there, because $\lfloor\sqrt{i}\rfloor=n$ for $n^{2} \leq i \leq(n+1)^{2}-1$, we have $\sum_{i=n^{2}}^{(n+1)^{2}-1} \frac{\left(\frac{-2}{5}\right)^{\lfloor\sqrt{i}\rfloor}}{\sqrt{i}+\sqrt{i+1}}=$ $\left(\frac{-2}{5}\right)^{n} \sum_{i=n^{2}}^{(n+1)^{2}-1} \frac{1}{\sqrt{i+1}+\sqrt{i}}=\left(\frac{-2}{5}\right)^{n} \sum_{i=n^{2}}^{(n+1)^{2}-1} \frac{1}{\sqrt{i+1}+\sqrt{i}} \frac{\sqrt{i+1}-\sqrt{i}}{\sqrt{i+1}-\sqrt{i}}=\left(\frac{-2}{5}\right)^{n} \sum_{i=n^{2}}^{(n+1)^{2}-1} \frac{\sqrt{i+1}-\sqrt{i}}{i+1-i}=$ $\left(\frac{-2}{5}\right)^{n} \sum_{i=n^{2}}^{(n+1)^{2}-1} \sqrt{i+1}-\sqrt{i}$ which telescopes to $\left(\frac{-2}{5}\right)^{n}\left(\sqrt{(n+1)^{2}-1+1}-\sqrt{n^{2}}\right)=\left(\frac{-2}{5}\right)^{n}(n+$ $1-n)=\left(\frac{-2}{5}\right)^{n}$. So our sum is simply equal to $\sum_{n=0}^{\infty}\left(\frac{-2}{5}\right)^{n}=\frac{1}{1-\left(\frac{-2}{5}\right)}=\frac{5}{7}$. To formally prove that this grouping is allowed, you can do clever things with the sandwich theorem, but that is up to you.
3. Compute

$$
\frac{1}{\sin ^{2} \frac{\pi}{10}}+\frac{1}{\sin ^{2} \frac{3 \pi}{10}}
$$

## Answer: 12

Solution: We begin by using the cosine double angle formula to rewrite $\frac{1}{\sin ^{2} \frac{\pi}{10}}+\frac{1}{\sin ^{2} \frac{3 \pi}{10}}=$ $\frac{1}{\frac{1}{2}-\frac{1}{2} \cos \frac{\pi}{5}}+\frac{1}{\frac{1}{2}-\frac{1}{2} \cos \frac{3 \pi}{5}}=2\left(\frac{2-\left(\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}\right)}{1-\left(\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}\right)+\cos \frac{\pi}{5} \cos \frac{3 \pi}{5}}\right)$. Simplifying this reduces to computing $\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}$ and $\cos \frac{\pi}{5} \cos \frac{3 \pi}{5}$.
For the sum of the cosines, the quickest and most intuitive argument (in my opinion) goes as follows. Since the angles involved are multiples of $\frac{\pi}{5}$, we think of the unit circle and a regular pentagon inscribed in it (with vertex at $(-1,0)$ ). If we construct vectors from the origin to the vertices, we note that $\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}$ is the sum of the $x$ coordinates of 2 of the vectors. Also, $S=\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}=\cos \frac{9 \pi}{5}+\cos \frac{7 \pi}{5}$ because it is the reflection of those two vectors across the $x$-axis (and also because this is a basic property of the cosine). Finally, the sum of all 5 of these vectors must be 0 - suppose not. Then we may rotate all 5 vectors by $\frac{\pi}{5}$ to get the exact same vector sum, but the only vector which remains the same when rotated by less than a full revolution is the 0 vector. So the sum of all the $x$ coordinates must be 0 . Thus $2 S+\cos \frac{5 \pi}{5}=2 S-1=0$ and $S=\frac{1}{2}$.

For the product, we note that $\cos \frac{3 \pi}{5}=-\cos \frac{2 \pi}{5}$ so that $\cos \frac{\pi}{5} \cos \frac{3 \pi}{5}=-\cos \frac{\pi}{5} \cos \frac{2 \pi}{5} \frac{\sin \frac{\pi}{5}}{\sin \frac{\pi}{5}}=$ $-\frac{\frac{1}{2} \sin \frac{2 \pi}{5} \cos \frac{2 \pi}{5}}{\sin \frac{\pi}{5}}=-\frac{1}{4} \frac{\sin \frac{4 \pi}{5}}{\sin \frac{\pi}{5}}=-\frac{1}{4}$.
We may plug both of these in to get $\frac{1}{\sin ^{2} \frac{\pi}{10}}+\frac{1}{\sin ^{2} \frac{3 \pi}{10}}=2\left(\frac{2-\frac{1}{2}}{1-\frac{1}{2}-\frac{1}{4}}\right)=12$.

