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1. David flips a fair coin five times. Compute the probability that the fourth coin flip is the first
coin flip that lands heads.

Answer:
1

16

Solution: David must flip three tails, then heads. This happens with probability

(
1

2

)4

=
1

16
.

2. Find the largest integer that divides p2 − 1 for all primes p > 3.

Answer: 24

Solution: For p = 5, p2 − 1 = 24 and hence the answer must be a divisor of 24. Since
p2−1 = (p+1)(p−1) and all primes p > 3 are odd, one of (p+1) and (p−1) will be divisible by
2 and the other will be divisible by 4. So the answer is either 8 or 24. Furthermore, since p > 3
cannot be divisible by 3, either (p + 1) or (p − 1) must be divisible by 3. Hence, the answer is
24 .

3. We say that a number is arithmetically sequenced if the digits, in order, form an arithmetic
sequence. Compute the number of 4-digit positive integers which are arithmetically sequenced.

Answer: 30

Solution: There are 9 numbers with an arithmetic sequence of difference 0 (1111 through 9999).
There are 6 with an arithmetic sequence of difference 1 (1234 through 6789). There are 3 with
an arithmetic sequence of difference 2 (1357 through 3579). There are 7 with an arithmetic
sequence of difference −1 (3210 through 9876). There are 4 with an arithmetic sequence of
difference −2 (6420 through 9753), and there is 1 with a difference of −3 (9630). The answer is
therefore 9 + 6 + 3 + 7 + 4 + 1 = 30 .

4. For any positive integer x ≥ 2, define f(x) to be the product of the distinct prime factors of
x. For example, f(12) = 2 · 3 = 6. Compute the number of integers 2 ≤ x < 100 such that
f(x) < 10.

Answer: 23

Solution: Clearly, f(x) ≤ x, so we can start with 2, 3, 4, 5, 6, 7, 8, 9. Then, any other x with
f(x) < 10 will be one of these numbers multiplied by a prime (or multiple primes) that already
divides it. Otherwise, if we multiply by a new prime, then that prime will contribute to f(x)
and make it ≥ 10.

Hence, we can investigate each of our starting numbers in turn. The new numbers in each row
are bolded:

2→ 2n → 4, 8,16,32,64

3→ 3n → 9,27,81

4→ 2n → 8, 16, 32, 64

5→ 5n → 25

6→ 2m · 3n → 12,18,24,36,48,54,72,96

7→ 7n → 49

8→ 2n → 16, 32, 64

9→ 3n → 27, 81
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Hence, we have 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 48, 49, 54, 64, 72, 81, 96, for a total of
23 numbers that work.

5. Compute the number of ways there are to select three distinct lattice points in three-dimensional
space such that the three points are collinear and no point has a coordinate with absolute value
exceeding 1.

Answer: 49

Solution: Each dimension can be considered independently. There are five valid arrange-
ments for the points of each dimension: (−1,−1,−1), (0, 0, 0), (1, 1, 1), (−1, 0, 1), and (1, 0,−1).
Naively, this gives us 53 = 125 different arrangements, but note that this counts all 27 arrange-
ments where the points are not distinct. Therefore, we have 125− 27 = 98 arrangements. Since
order doesn’t matter, this method double counts everything, so our final answer is 98/2 = 49 .

6. Fred lives on one of 10 islands sitting in a vast lake. One day a package drops uniformly at
random on one of the ten islands. Fred can’t swim and has no boat, but luckily there is a
teleporter on each island. Each teleporter teleports to only one of the other ten teleporters
(note that it may teleport to itself ), and no two teleporters teleport to the same teleporter. If
the configuration of the teleporters is chosen uniformly at random from all configurations that
satisfy these constraints, compute the probability that Fred can get to the package using the
teleporters.

Answer:
11

20
Solution 1: Let an denote the probability that Fred can get the package if there are n islands.
With probability 1/n, the package lands on his own island, so he immediately succeeds. Oth-
erwise, his only option is to take the teleporter. With probability 1/n, this lands him back on
his current island, and he is stuck. Otherwise, he teleports to a new island. We notice that of
the remaining n− 1 teleporters with unknown destination, exactly one goes to an island already
visited (namely, Fred’s starting island). So, this case is identical to the case of the original
problem with n− 1 islands (alternatively, imagine combining Fred’s starting island and the one
to which he teleports into one island, and note that the remaining n−1 teleporters now all point
to distinct islands). This gives us the recurrence

an =
1

n
+

n− 1

n
an−1.

By inspection, a2 = 1. By induction, it can be shown that

an =
1

2n
+

1

2
,

so the answer is
11

20
.

Solution 2: Each possible configuration of the island teleporters can be viewed as the permu-
tation p of the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with island 1 teleporting to p1, island 2 teleporting
to p2... First, the package may land on Fred’s island, in which case he doesn’t need to use any
teleporters. This has probability 1

10 .

With probability 9
10 the package lands on a different island. Then we proceed by induction on

the number of islands n. Assume WLOG that Fred is on island 1 and the package is on island
n. For n = 2, Fred can only find the package for permutation {2, 1} and not {1, 2}, and hence



SMT 2014 Advanced Topics Test Solutions February 15, 2014

the probability of success is 1/2. Assume it is true for n− 1 islands, and consider the case of n
islands. Fred can only succeed if p1 6= 1. If p1 = n (probability 1/n) then success is guaranteed.
For the n−2 cases 2 ≤ p1 ≤ n−1, we reduce back to our inductive hypothesis and find a success

rate of 1/2. Hence, Fred’s chance of success is
1

2
.

Hence, when n = 10, fred’s overall chance of success is 1
10 + 9

10 ·
1
2 =

11

20

7. A one-player card game is played by placing 13 cards (Ace through King in that order) in a
circle. Initially all the cards are face-up and the objective of the game is to flip them face-down.
However, a card can only be flipped face-down if another card that is ‘3 cards away’ is face-up.
For example, one can only flip the Queen face-down if either the 9 or the 2 (or both) are face-up.

A player wins the game if they can flip all but one of the cards face-down. Given that the cards
are distinguishable, compute the number of ways it is possible to win the game.

Answer: 13(2)11 = 26624

Solution: We can think of an equivalent simpler game in which the cards are arranged in a
circle in the following order: A, 4, 7, 10, K, 3, etc. In this game one can flip a card face-down if
an adjacent card is face-up.
In our equivalent game, we can call a face-up card whose two adjacent cards are face-down (and
thus cannot itself be flipped facedown) an isolated card. Winning a game thus amounts to
creating one and only one isolated card.
It is clear that an isolated card cannot be created on the first turn. Moreover, if one creates an
isolated card on the second turn, then one will have to create at least one more isolated card
and thus the game cannot be won as such. Similarly, the game cannot be won if an isolated
card is created on the 3rd, 4th, 5th, ..., 11th turn. Hence the isolated card must be created on
the last, or 12th, turn.
Therefore, since the cards are distinguishable, one has 13 choices for the first card and 2 for
any subsequent card. This is because any subsequent card must be one chosen from the two
cards on either side of the ‘face-down block’ (otherwise more than one isolated card is created).
Therefore the number of ways one can win is 13(2)11 = 26624 .

8. a0, a1, . . . is a sequence of positive integers where an = n! for all n ≤ 3. Moreover, for all n ≥ 4,
an is the smallest positive integer such that

an
aian−i

is an integer for all integers i, 0 ≤ i ≤ n. Find a2014.

Answer: 210073671

Solution: Note that it is equivalent to saying that for n ≥ 4, an is the least common multiple
of

{a1an−1, a2an−2, . . . , an−1a1}.

This formulation makes it clear that an has no prime factors other than 2 and 3, for any n. We
also notice that we can consider these two prime factors independently, since the LCM of the
above set will be the highest power of two present times the highest power of three present.

In particular, let bn denote the sequence defined as above, except b0 = b1 = 1 and b2 = b3 = 2.
Similarly, let cn denote the sequence defined as above, except c0 = c1 = c2 = 1 and c3 = 3. It is
clear that an = bn · cn for all n.
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We claim that bn = 2bn/2c. The proof is by induction. If n = 2k, then

bi · b2k−i = 2bi/2c · 2b(2k−i)/2c ≤ 2i/2 · 2k−i/2 = 2k,

with equality when i ≡ 0 (mod 2). And, if n = 2k + 1, then

bi · b2k+1−i = 2bi/2c · 2b(2k+1−i)/2c = 2i/2 · 2(2k+1−i)/2 · 2−1/2 = 2k,

because exactly one of i and 2k + 1− i is odd.

A similar argument, with 3 cases modulo 3, works to show cn = 3bn/3c. Hence, in general we

have an = 2bn/2c3bn/3c, and the answer follows as 210073671 .

9. Compute the smallest positive integer n such that the leftmost digit of 2n (in base 10) is 9.

Answer: 53

Solution: First, we note that for n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} we get the leftmost digits

{1, 2, 3, 4, 5, 6, 8}. This tells us that n ≥ 10 or in other words, n = 10m + r for some integer
m ≥ 1 and 0 ≤ r < 10. But we also note that 210 = 1024 is just slightly greater than 1000 = 103,
so for small values of m, the leftmost digit of 2n is the same as the leftmost digit of 2r. But for
r between 0 and 9, there is no leftmost digit 9. The closest we get is 8, so we guess that the first
natural number n so that 2n has leftmost digit 9 has n = 10m + 3. To finish the problem, we
need to figure out the smallest integer m so that 10 > 1.024m · 8 ≥ 9 and the answer will follow.
We approximate 1.024m = (1 + .024)m & 1 + .024m + .0242 · m(m−1)

2 . And for m = 5 we get
1.0245 ·8 & (1+5 · .024+10 · .0242) ·8 = (1.12576) ·8 > 1.125 ·8 = 9. So m = 5 is big enough and
53 should already be our top guess. However, we do not know yet if 1.0245 · 8 < 10 and if m = 4
works. First we show that m = 4 doesn’t work: 1.0244 ·8 = 1.0485762 ·8 < 1.052 ·8 = 1.1025 ·8 <
1.125 · 8 = 9. Thus, m > 4. Now we check that 1.0245 · 8 < 10. If this is true, then we are done.
Using the calculations above, 1.0245 ·8 < 1.1025·1.024·8 < 1.11·1.03·8 = 1.1433·8 < 1.25·8 = 10.
Thus, m > 4 and m = 5 works, giving us the integer n = 5 · 10 + 3 = 53 is the smallest integer
n with the desired property.

One may criticize that this problem has too much computation. However, the most complex
computations in this problem are easily simplified: for example, 1.0242 = 1 + 2 · .024 + .0242 =
1.048576 is trivial (I wrote this solution down without a calculator and did all the computations
with little hesitation). Also, because all computations are for strict inequalities, there are plenty
of ways of minimizing the actual need to calculate things by hand. Finally, the smartest won’t go
about proving all of the things I proved and would stop at 1.024m ·8 ≈ 8+8 · .024m = 8+ .192m
is really really close to 9 when m = 5, and since that approximation is an underestimate, one
concludes intuitively that 1.0245 · 8 is greater than 9, but only by a little bit- making m = 5 the
most suitable choice, and the answer 53 .

10. Compute the number of permutations of 1, 2, 3, . . . , 50 such that if m divides n the mth number
in the permutation divides the nth number.

Answer: 4320

Solution: Let p1 . . . p50 denote a permutation of 1 . . . 50. Then the constraint in the problem is
m|n ⇒ pm|pn. Of course, pm|pn for exactly as many m,n as m|n, so in fact m|n if and only if
pm|pn.

Hence, for all n, pn must have the same number of factors as n, and the same number of
multiples as n up to 50 (which means b50n c = b 50pn c). We can construct equivalence sets
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of numbers that have the same number of factors and multiples. The only sets with more
than one element are: {14, 15}, {18, 20}, {21, 22}, {17, 19, 23}, {28, 32, 44, 45, 50}, {30, 40, 42},
{26, 27, 33, 34, 35, 38, 39, 46}, and {29, 31, 37, 41, 43, 47}.
Clearly, for a permutation to satisfy the constraint of the problem we can only permute numbers
within these equivalence sets. Additionally, we can only permute numbers that don’t have
unpermutable proper divisors (other than divisors shared with all elements of the set), otherwise
permuting that number but not its divisor will also violate the condition in the problem. Hence,
we’re left with {17, 19, 23}, {34, 38, 46}, and {29, 31, 37, 41, 43, 47}. There are 3! permutations
of the first set, which will uniquely determine the order of the numbers in the second set. The
remaining six primes in the third set can then be in any order, so there are a total of 3!·6! = 4320
permutations.


