1. A circle of radius 2 is inscribed in equilateral triangle $A B C$. The altitude from A to $B C$ intersects the circle at a point D not on $B C . B D$ intersects the circle at a point E distinct from D. Find the length of $B E$.
Answer: $\frac{6}{\sqrt{7}}$
Solution: We can find the side length of the triangle as follows: Since the triangle is equilateral, the segment from the center of the circle to a vertex (say A) bisects the angle. Also, the segment from the center to an adjacent point of tangency (say the perpendicular to $A C$) creates a right angle. So we get a 30-60-90 triangle, which tells us that the side length of the triangle is $4 \sqrt{3}$.

Next, we call the point of intersection of $A D$ and $B C$ point F. Consider triangle $D B F$. Using the Pythagorean theorem, $B D=2 \sqrt{7}$. By power of a point, $B E \cdot B D=B F^{2}$. So $B E=\frac{B F^{2}}{B D}=$ $\frac{12}{2 \sqrt{7}}=\frac{6}{\sqrt{7}}$.
2. Points A, B, and C lie on a circle of radius 5 such that $A B=6$ and $A C=8$. Find the smaller of the two possible values of $B C$.
Answer: $\frac{14}{5}$
Solution: Fix segment $A B$, and let C and D be the two points on the circle 8 units from A, where C is closer to B than D. Observe that $B D$ is a diameter (and hence $B D=10$) because a 6-8-10 inscribed right triangle must be possible.
Next, we see that $C D$ can be calculated by drawing the diameter that goes through A, intersecting the opposite side of the circle at point E. Note that $C D \perp A E$. Moreover, $A C E$ and $A D E$ are right, since they are inscribed in semicircles, and $E C=E D=6$ by the Pythagorean Theorem. Computing the area of quadrilateral $A C E D$ two different ways, we get

$$
\frac{1}{2} \cdot A E \cdot C D=5 \cdot C D=\frac{1}{2} \cdot A C \cdot C E+\frac{1}{2} \cdot A D \cdot D E=48 \Longrightarrow C D=\frac{48}{5}
$$

Finally, since $B C D$ is a right triangle with $C D=\left(\frac{2}{5}\right) 24$ and $B D=\left(\frac{2}{5}\right) 25$, we conclude that $B C=\left(\frac{2}{5}\right) 7=\frac{14}{5}$.
3. In quadrilateral $A B C D$, diagonals $A C$ and $B D$ intersect at E. If $A B=B E=5, E C=C D=7$, and $B C=11$, compute $A E$.
Answer: $\frac{47}{7}$
Solution 1: First, notice that length $A E$ is completely determined by the fact that $A B=B E$ and by the lengths of $A B, B C$ and $E C$. Thus, we only consider the triangle $A B C$. First, drop altitude $B H$ and note that since $A B E$ is isoceles, $E H=\frac{1}{2} A E$. Now, using Pythagoras twice, we have

$$
\begin{aligned}
& B H^{2}=5^{2}-E H^{2} \\
& B H^{2}=11^{2}-(7+E H)^{2} .
\end{aligned}
$$

Setting these two equations to be equal, we can thus solve the equation $25=72-14 E H$. Therefore, $A E=2 E H=\frac{47}{7}$.

Solution 2: Since $\angle A E B \cong \angle D E C$, we have $\triangle A E B \sim \triangle D E C$ by SAS. Hence, $\frac{A E}{D E}=\frac{B E}{C E} \Longrightarrow$ $\frac{A E}{B E}=\frac{D E}{C E}$. Additionally, $\angle B E C \cong \angle A E D$, so $\triangle B E C \sim \triangle A E D$ by SAS again.
Now, we do some angle-chasing. Since $\angle B A E \cong \angle C D E$ and $\angle E A D \cong \angle E B C, \angle A B C$ and $\angle A D C$ are supplementary. Hence, $A B C D$ is cyclic.
Let $A E=5 x$, so $D E=7 x$ since $\frac{A E}{D E}=\frac{B E}{C E}=\frac{5}{7}$. Also, note that $A D=x \cdot B C=11 x$ because $\frac{A D}{B C}=\frac{A E}{B E}=\frac{5 x}{5}=x$.
Now, Ptolemy's Theorem gives us

$$
\begin{aligned}
5 \cdot 7+11 \cdot 11 x & =(5 x+7)(7 x+5) \\
\Longrightarrow 121 x+35 & =35 x^{2}+74 x+35 \\
\Longrightarrow 121 x & =35 x^{2}+74 x \\
\Longrightarrow 47 x & =35 x^{2} \\
\Longrightarrow x & =\frac{47}{35}
\end{aligned}
$$

because $x>0$.
Hence, report $5 x=\frac{47}{7}$.

