1. Compute $\int_{e^{e}}^{\infty} \frac{d x}{x(\log x)(\log \log x)(\log \log \log x)^{4 / 3}}$.

Answer: 3

Solution: Substitute $u=\log \log \log x$, yielding

$$
\int_{1}^{\infty} u^{-\frac{4}{3}} d u=\left[-3 u^{-\frac{1}{3}}\right]_{1}^{\infty}=3 .
$$

2. For which integers $1 \leq m \leq 10$ is it true that

$$
\int_{0}^{\pi}(\cos x)(\cos 2 x) \cdots(\cos m x) d x=0 ?
$$

Answer: 1, 2, 5, 6, 9, 10

Solution 1: Apply the product-to-sum formula repeatedly on the integrand, until we have no more products of cosines. What remains in the integrand (besides some factors of two which we can ignore) are 2^{m} terms, each written as $\cos ((\pm 1 \pm 2 \pm \cdots \pm m) x)$. Each such term integrates to 0 if and only if $(\pm 1 \pm \cdots \pm m)$ sums to a nonzero number; otherwise, the term is $\cos 0=1$, which integrates to something positive.
Therefore, the integral is nonzero if and only if there is some choice for the \pm such that we can get $\pm 1 \pm \cdots \pm m=0$.
Observe that if $m \equiv 1,2 \bmod 4$ (i.e. the numbers $1, \ldots, m$ contains an odd number of odd numbers), then $\pm 1 \pm \cdots \pm m$ is always odd and hence nonzero; therefore, the integral is zero when $m \equiv 1,2 \bmod 4$.
When $m \equiv 0 \bmod 4$, we can write $m=4 k$, so that $(1+4 k)-(2+(4 k-1))+\cdots=0$. Therefore the integral is nonzero.
When $m \equiv 3 \bmod 4$, we can write $m=4 k+3$, so $(1+2-3)+(4+(4 k+3))-(5+(4 k+2))+\cdots=0$. Therefore the integral is nonzero.
This covers all of the cases, so we can conclude that the above integral is zero if and only if $m \equiv 1,2 \bmod 4$. Therefore, we should report $1,2,5,6,9,10$.
Solution 2: Observe that for all k, we have that

$$
\begin{aligned}
\cos ((2 k+1)(\pi-x)) & =\cos ((2 k+1) \pi-(2 k+1) x)=\cos (\pi-(2 k+1) x)=-\cos ((2 k+1) x) \\
\cos (2 k(\pi-x)) & =\cos (2 k \pi-2 k x)=\cos (-2 k x)=\cos (2 k x) .
\end{aligned}
$$

This means that $\cos (n x)$ is odd about the line $x=\frac{\pi}{2}$ when n is odd, and even about the line $x=\frac{\pi}{2}$ when n is even.
Let $f_{m}(x)=(\cos x)(\cos 2 x) \cdots(\cos m x)$. Then

$$
f_{m}(\pi-x)= \begin{cases}f_{m}(x) & m \equiv 0,3 \bmod 4 \\ -f_{m}(x) & m \equiv 1,2 \bmod 4\end{cases}
$$

Therefore, by symmetry, $\int_{0}^{\pi} f_{m}(x) d x=0$ when $m \equiv 1,2 \bmod 4$.
It remains to show that $\int_{0}^{\pi} f_{m}(x) d x \neq 0$ when $m \equiv 0,3 \bmod 4$. There are a number of ways to do this, such as the solution above.
3. Let $f(x)=\sum_{n=0}^{\infty} \frac{\sin n x}{n!}$. Compute $f\left(\frac{\pi}{3}\right)$.

Answer: $e^{1 / 2} \sin \left(\frac{\sqrt{3}}{2}\right)$
Solution:
$\sum_{n=0}^{\infty} \frac{\sin n x}{n}=\operatorname{Im}\left(\sum_{n=0}^{\infty} \frac{e^{i n x}}{n!}\right)=\operatorname{Im}\left(e^{e^{i x}}\right)=\operatorname{Im}\left(e^{\cos x+i \sin x}\right)=e^{\cos x} \cdot \operatorname{Im}\left(e^{i \sin x}\right)=e^{\cos x} \sin \sin x$.
Therefore $f(x)=e^{\cos x} \sin \sin x$ and the answer follows.

