1. x is a base- 10 number such that when the digits of x are interpreted as a base- 20 number, the resulting number is twice the value as when they are interpreted as a base-13 number. Find the sum of all possible values of x.
Answer: 198
Solution: Clearly it can't be one-digit. If we try two digits, we get $20 a+b=2(13 a+b)$ or $6 a+b=0$, which again has no solution.
For three digits, we have $400 a+20 b+c=2(169 a+13 b+c)$, or $62 a=6 b+c$. If we want $1 \leq a \leq 9$ and $0 \leq b, c \leq 9$, there is only one solution, namely $a=1, b=9$, and $c=8$. If we try four digits, we easily see that $20^{4}-2 \cdot 13^{4}$ is far too large for anything to come even close. Thus the only possible value for x is 198 .
2. If f is a monic cubic polynomial with $f(0)=-64$, and all roots of f are non-negative real numbers, what is the largest possible value of $f(-1)$? (A polynomial is monic if it has a leading coefficient of 1.)
Answer: - 125
Solution: If the three roots of f are r_{1}, r_{2}, r_{3}, we have $f(x)=x^{3}-\left(r_{1}+r_{2}+r_{3}\right) x^{2}+\left(r_{1} r_{2}+r_{1} r_{3}+\right.$ $\left.r_{2} r_{3}\right) x-r_{1} r_{2} r_{3}$, so $f(-1)=-1-\left(r_{1}+r_{2}+r_{3}\right)-\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right)-r_{1} r_{2} r_{3}$. Since $r_{1} r_{2} r_{3}=64$, the arithmetic mean-geometric mean inequality reveals that $r_{1}+r_{2}+r_{3} \geq 3\left(r_{1} r_{2} r_{3}\right)^{1 / 3}=12$ and $r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3} \geq 3\left(r_{1} r_{2} r_{3}\right)^{2 / 3}=48$. It follows that $f(-1)$ is at most $-1-12-48-64=-125$. We have equality when all roots are equal, i.e. $f(x)=(x-4)^{3}$.
3. Find the minimum of $f(x, y, z)=x^{3}+12 \frac{y z}{x}+16\left(\frac{1}{y z}\right)^{\frac{3}{2}}$ where x, y, and z are all positive. 1

Answer: 24

Solution:

$f(x, y, z)=x^{3}+12 \frac{y z}{x}+16\left(\frac{1}{y z}\right)^{\frac{3}{2}} \geq 6 \sqrt[6]{x^{3} \cdot 4 \frac{y z}{x} \cdot 4 \frac{y z}{x} \cdot 4 \frac{y z}{x} \cdot 8\left(\frac{1}{y z}\right)^{\frac{3}{2}} \cdot 8\left(\frac{1}{y z}\right)^{\frac{3}{2}}}=6 \sqrt[6]{4^{6}}=\boxed{24}$.
This is attainable by setting $x=y z=\sqrt[3]{4}$.

[^0]
[^0]: ${ }^{1}$ The problem as given in the tiebreaker did not specify that each of x, y, and z had to be positive. Without this constraint, the answer is $-\infty$, as x^{3} can be an arbitrarily large negative value and dominate the expression.

