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1. How many functions f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} take on exactly 3 distinct values?

Answer: 1500

Solution: There are
(
5
3

)
possibilities for the range, so the answer is 10N where N is the

number of surjective functions from {1, 2, 3, 4, 5} to a given 3-element set. The total number
of functions {1, 2, ..., 5} → {1, 2, 3} is 35, from which we subtract

(
3
2

)
(the number of 2-element

subsets of {1, 2, 3}) times 25 (the number of functions mapping into that subset), but then
(according to the Principle of Inclusion-Exclusion) we must add back

(
3
1

)
(the number of functions

mapping into a 1-element subset of {1, 2, 3}). Thus: N = 35 −
(
3
2

)
(25) +

(
3
1

)
(15) = 150. So

10N = 10(150) = 1500 .

2. Let i be one of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Suppose that for all positive integers
n, the number nn never has remainder i upon division by 12. List all possible values of i.

Answer: 2, 6, 8, 10

Solution: The table below gives the value of kn (mod 12) for k = 0, 1, . . . , 11 and n = 1, 2, 3.
(Note that when n = 1, this is just the value of k.)

k n = 2 n = 3
0 0 0
1 1 1
2 4 8
3 9 3
4 4 4
5 1 5
6 0 0
7 1 7
8 4 8
9 9 9
10 4 4
11 1 11

All values of k have period 1 or 2 (the rows for 2 and 8 continue 4, 8, 4, 8, etc.) We can see that
nn cannot be congruent to 2, 6, 10 when divided by 12 for n > 1, and hence cannot be congruent
to 2, 6, 10 at all. For nn to be congruent to 8 (mod 12), we would need either n ≡ 2 (mod 12)
and n ≡ 1 (mod 2) or n ≡ 8 (mod 12) and n ≡ 1 (mod 2); this is impossible since a number
which is 2 or 8 (mod 12) must be even. All other remainders indeed occur; this can be checked
by inspection, with the help of the Chinese Remainder Theorem. So our answer is 2, 6, 8, 10 .

3. A card is an ordered 4-tuple (a1, a2, a3, a4) where each ai is chosen from {0, 1, 2}. A line is an
(unordered) set of three (distinct) cards {(a1, a2, a3, a4), (b1, b2, b3, b4), (c1, c2, c3, c4)} such that
for each i, the numbers ai, bi, ci are either all the same or all different. How many different lines
are there?

Answer: 1080

Solution: There are 34 = 81 different cards. Any choice of two cards determines a unique line,
since if we know ai and bi, ci must equal ai, bi if ai = bi and must equal neither if ai 6= bi. This
produces

(
81
2

)
lines, but for each line there are 3 pairs of cards which generate that line, so our

final answer is 1
3

(
81
2

)
= 27 · 40 = 1080 .
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4. We say that the pair of positive integers (x, y), where x < y, is a k-tangent pair if we have

arctan
1
k

= arctan
1
x

+ arctan
1
y
. Compute the second largest integer that appears in a 2012-

tangent pair.

Answer: 811641

Solution: By taking tangents of both sides we have

1
k

=
1/x + 1/y

1− 1/xy
=

y + x

xy − 1
,

so xy = k(x + y) + 1, (x− k)(y − k) = k2 + 1. For k = 2012 the second largest factor of k2 + 1
is (k2 + 1)/5 = 809629 and thus the second largest integer y is k + 809629 = 811641 .

5. Regular hexagon A1A2A3A4A5A6 has side length 1. For i = 1, . . . , 6, choose Bi to be a point
on the segment AiAi+1 uniformly at random, assuming the convention that Aj+6 = Aj for all
integers j. What is the expected value of the area of hexagon B1B2B3B4B5B6?

Answer: 9
√

3
8

Solution 1: By symmetry, E[(BiAi+1Bi+1)] = E[(BjAj+1Bj+1)] for all integers i and j. There-
fore, applying linearity of expectation, the expected area of B1B2B3B4B5B6 is equal to the area
of A1A2A3A4A5A6 minus six times the expected area of B1A2B2. Since the lengths of B1A2 and
B2A2 are independent, this expectation is equal to (1

2 sin 120◦)E[B1A2]E[B2A2]. It is easy to
see that E[B1A2] = E[B2A2] = 1/2, so E[(A1B2A2)] =

√
3

16 . The area of a unit regular hexagon

is 6(
√

3/4), so our answer is 6(
√

3
4 −

√
3

16 ) =
9
√

3
8

.

Solution 2: Since the area of B1B2B3B4B5B6 is linear in the location of Bi for each i, and the
Bi are all independent, we can argue that the average case comes when each Bi is a midpoint
of AiAi+1.

6. Evaluate
∞∑

n=1

∞∑
m=1

1
nm(n + m + 1)

.

Answer: 2

Solution 1: Using the partial fraction

1
m(n + m + 1)

=
1

n + 1

(
1
m
− 1

n + m + 1

)
we can sum the series in m first to get

∞∑
n=1

∞∑
m=1

1
nm(n + m + 1)

=
∞∑

n=1

1
n(n + 1)

(
1
1

+
1
2

+ · · · 1
n + 1

)
=
∑

k≤n+1

1
kn(n + 1)

.
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For k = 1, this sum has a term for each n ≥ 1, and for larger values of k, it has a term for each
n ≥ k − 1. Then we can rewrite this as

=
∞∑

n=1

1
n(n + 1)

+
∞∑

k=2

1
k

∞∑
n=k−1

(
1
n
− 1

n + 1

)

= 1 +
∞∑

k=2

1
k(k − 1)

= 1 + 1 = 2 .

Solution 2: Consider the Taylor expansion

− log(1− x) = x +
x2

2
+

x3

3
+ · · · =

∞∑
n=1

xn

n
.

We square this equation to obtain

(log(1− x))2 =
∞∑

n,m=1

xn+m

nm
.

Integrating both sides from 0 to 1 will give the answer. We make the substitution

x = 1− ey, 0 ≥ y > −∞

to get ∫ 1

0
(log(1− x))2dx =

∫ −∞

0
(log ey)2(−eydy) =

∫ ∞

0
y2e−ydy = 2

upon integrating by parts twice.

7. A plane in 3-dimensional space passes through the point (a1, a2, a3), with a1, a2, and a3 all
positive. The plane also intersects all three coordinate axes with intercepts greater than zero
(i.e. there exist positive numbers b1, b2, b3 such that (b1, 0, 0), (0, b2, 0), and (0, 0, b3) all lie on
this plane). Find, in terms of a1, a2, a3, the minimum possible volume of the tetrahedron formed
by the origin and these three intercepts.

Answer: 9
2
a1a2a3

Solution: Let the x, y, and z intercepts of the plane be b1, b2, and b3, respectively. The
tetrahedron in question has volume 1

6b1b2b3. The equation of our plane is x
b1

+ y
b2

+ z
b3

= 1, since
these three intercepts determine the plane. Therefore, we are minimizing 1

6b1b2b3 subject to the
constraint a1

b1
+ a2

b2
+ a3

b3
= 1. By AM-GM, we get that

a1a2a3

b1b2b3
≤
( a1

b1
+ a2

b2
+ a3

b3

3

)3

=
1
27

.

Therefore, b1b2b3 ≥ 27a1a2a3 with equality if

a1

b1
=

a2

b2
=

a3

b3
=

1
3
,

which is attained by choosing bi = 3ai. Hence, the desired minimum volume is 27a1a2a3
6 =

9
2
a1a2a3 .
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8. The left end of a rubber band e meters long is attached to a wall and a slightly sadistic child
holds on to the right end. A point-sized ant is located at the left end of the rubber band at time
t = 0, when it begins walking to the right along the rubber band as the child begins stretching
it. The increasingly tired ant walks at a rate of 1/(ln(t + e)) centimeters per second, while the
child uniformly stretches the rubber band at a rate of one meter per second. The rubber band
is infinitely stretchable and the ant and child are immortal. Compute the time in seconds, if it
exists, at which the ant reaches the right end of the rubber band. If the ant never reaches the
right end, answer +∞.

Answer: ee100 − e

Solution: Let x(t) be the position of the ant at time t, l(t) be the length of the rubber band at
time t, and va(t) = 1

100 log(t+e) be the ant’s walking speed relative to the rubber band. We have
dx
dt = va(t) + x · dl/dt

l(t) , where the second term comes from the stretching of the rubber band (the
rate of change in length divided by the length gives the rate of stretching of an infinitesimal piece
of rubber band; multiplying by x(t) gives the contribution to the ant’s forward motion from the
part of the rubber band behind the ant). This is just dx

dt = va(t) + x d
dt(log l(t)), and multiplying

both sides by e− log l(t) and rearranging, we have d
dt

(
x

l(t)

)
= va(t)

l(t) , or x(t)
l(t) =

∫ t
0

va(s)
l(s) ds (applying

initial conditions). We need
∫ t
0

va(s)
l(s) ds = 1

100

∫ t
0

1
(s+e) log(s+e) ds = 1

100 [log log(s + e)]t0 to equal 1,

which occurs at time t = ee100 − e .

9. We say that two lattice points are neighboring if the distance between them is 1. We say that a
point lies at distance d from a line segment if d is the minimum distance between the point and
any point on the line segment. Finally, we say that a lattice point A is nearby a line segment
if the distance between A and the line segment is no greater than the distance between the line
segment and any neighbor of A. Find the number of lattice points that are nearby the line
segment connecting the origin and the point (1984, 2012).

Answer: 1989

Solution: For notational convenience, let ` be the line passing through the origin and (1984, 2012).

First, note that a point P can only be nearby the given line segment if its x-coordinate is between
0 and 1984, inclusive. If the x-coordinate of P is negative, its distance to any point on the line
segment is less than the distance between that point on the line segment and the point one unit
to the right of P ; if P has x-coordinate greater than 1984, take the point one unit to the left.
This inequality holds due to the creation of a right or obtuse angle between P , the point next
to P , and any point on the line segment (the edge case where the three points are collinear
remains, but this is easily checked separately).

Now, fix a value x ∈ {0, 1, . . . , 1984}, and let S be the set of lattice points with that x coordinate.
Let Q be the point on the line segment with this x-coordinate. Note that for any P ∈ S, the
distance between P and the line segment is either the distance from P to ` or the distance from
P to one of the endpoints of the line segment. In the latter case, since there always exists a
cardinal direction to move closer to a given point, P is not nearby our segment. Now consider
the former case. By similar triangles, the distance between P and ` is proportional to PQ, and
so the only P which could possibly be nearby the segment are the P closest to Q. There are
two such points if the y-coordinate of Q has fractional part 1/2, and one such point otherwise.

Finally, we show that all such points are in fact nearby: this relies on the fact that the slope of `
is greater than 1. Consider a point P that is no further from ` than any other lattice point with
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the same x-coordinate. We already know that its distance to Q, the point on the line with same
x-coordinate, is less than or equal to 1/2. Now draw the horizontal line through P , intersecting
` at R. Since the slope of ` is greater than 1, we have PR < PQ ≤ 1/2, and so P is, out of all
lattice points with the same y coordinate, the closest one to `. Hence, it is a nearby point.

Now, we just need to count the number of nearby points. There are 1985 different valid choices
of x-coordinate, and we must double-count all the ones for which the point on ` with that
x-coordinate has y-coordinate with real part 1/2. Since ` is given by

y =
2012
1984

x =
503
496

x,

this condition holds when x ≡ 248 (mod 496), so there are 4 such values in the relevant interval.
Hence, report 1989 .

10. A permutation of the first n positive integers is valid if, for all i > 1, i comes after
⌊

i

2

⌋
in

the permutation. What is the probability that a random permutation of the first 14 integers is
valid?

Answer: 1
31752

Solution 1: 1 must be the first number in the permutation; this happens with probability
1
14

.

2 must come before 4, 5, 8, 9 10, and 11; this happens with probability
1
7
.

3 must come before 6, 7, 12, 13, and 14; this happens with probability
1
6
.

4 must come before 8 and 9; this happens with probability
1
3
.

5 must come before 10 and 11; this happens with probability
1
3
.

6 must come before 12 and 13; this happens with probability
1
3
.

7 must come before 14; this happens with probability
1
2
.

All these events are independent, so the answer is the product of the above probabilities, or
1

31752
.

Solution 2: Create a directed graph with vertices labeled 1 through 14, with an arrow from
vertex a to vertex b if b has to come after a in a valid permutation. The graph looks like this: 1
points to 2 and 3, 2 points to 4 and 5, 3 points to 6 and 7, 4 points to 8 and 9, 5 points to 10 and
11, 6 points to 12 and 13, 7 points to 14. We want to count the number of ways to merge this
graph into a line. There are two ways of ordering 12 and 13 WRT 6. Once this is fixed, there
are

(
5
3

)
= 10 ways of ordering the 6 − 12 − 13 group and the 7 − 14 group WRT 3. Similarly,

there are 2 ways of ordering 8, 9 WRT 4, 2 ways of ordering 10, 11 WRT 5, and
(
6
3

)
= 20 ways

of ordering the 4− 8− 9 group and the 5− 10− 11 group WRT 2. Finally, there are
(
13
6

)
ways

of ordering the 2 . . . group and the 3 . . . group WRT 1. This gives 2 · 10 · 2 · 2 · 20 ·
(
13
6

)
valid

permutations, and dividing by 14! gives the answer.



SMT 2012 Team Test and Solutions February 18, 2012

11. Given that x, y, z > 0 and xyz = 1, find the range of all possible values of

x3 + y3 + z3 − x−3 − y−3 − z−3

x + y + z − x−1 − y−1 − z−1
.

Answer: (27, +∞)

Solution: We make the following modifications to the numerator. Since xyz = 1, we may
multiply x−3, y−3, z−3 by x3y3z3, and also add −1 + x3y3z3. The numerator then factors as
−1 + x3 + y3 + z3 − x3y3 − x3z3 − y3z3 + x3y3z3 = (x3 − 1)(y3 − 1)(z3 − 1). Similarly, the
denominator factors as (x−1)(y−1)(z−1), so that the expression can be rewritten as (x2 +x+
1)(y2 + y + 1)(z2 + z + 1). Dividing this by xyz and writing z = 1/(xy), we find that this is in
fact

(
1 + x + 1

x

) (
1 + y + 1

y

)(
1 + xy + 1

xy

)
. We have from (a−1)2 ≥ 0 that a+1/a ≥ 2, so the

product has value at least (1 + 2)(1 + 2)(1 + 2) = 27. Equality cannot occur: this would require
x = 1/x, y = 1/y, or x = y = z = 1, making the original denominator zero. Everything larger
than 27 can occur, however: we simply consider the special case y = x, when the expression
reduces to

(
1 + x + 1

x

) (
1 + x + 1

x

) (
1 + x2 + 1

x2

)
, a continuous function of x which is unbounded

as x → +∞. Thus we answer (27,+∞) .

12. A triangle has sides of length
√

2, 3 +
√

3, and 2
√

2 +
√

6. Compute the area of the smallest
regular polygon that has three vertices coinciding with the vertices of the given triangle.

Answer: 12 + 6
√

3

Solution: We begin by computing the angles of the triangle; repeated application of the Law
of Cosines gives us that the angles of the triangle are 15◦, 60◦, and 105◦. Therefore, since the
greatest common divisor of the angles of the triangle is 15◦, a dodecagon is the smallest regular
polygon that satisfies our current constraints. In particular, the dodecagon has side length

√
2,

and it remains to compute the area of the dodecagon. The area of a regular dodecagon is

3 cot
( π

12

)
(
√

2)2 = 12 + 6
√

3 .

13. How many positive integers n are there such that for any natural numbers a, b, we have n |
(a2b + 1) implies n | (a2 + b)? (Note: The symbol | means “divides”; if x | y then y is a multiple
of x.)

Answer: 20

Solution: Let P represent the property of n such that n | a2b + 1 ⇒ n | a2 + b for all a, b ∈ N.
Let Q represent the property of n such that (a, n) = 1 ⇒ n | a4−1 for all a ∈ N. We shall prove
that they are equivalent.

Proof that P ⇒ Q: Let a be a positive integer with (a, n) = 1. By Bézout’s identity, we can find
b ∈ N such that n | a2b + 1. By P, n | a2 + b. Then a4− 1 = a2(a2 + b)− (a2b + 1), so n | a4− 1.

Proof that Q ⇒ P: Let a, b be positive integers with n | a2b+1. Clearly (a, n) = 1, so n | a4−1.
Then a2(a2 + b) = (a4 − 1) + (a2b + 1). Since a and n are relatively prime, n | a2 + b.

Now we wish to find all n with property Q. If a is odd, we have a4−1 = (a2−1)(a2 +1), a2 ≡ 1
(mod 8), and a2 + 1 is even, so 16 | a4 − 1. If (a, 3) = 1, we have a2 ≡ 1 (mod 3), so 3 | a4 − 1.
If (a, 5) = 1, we have 5 | a4 − 1 by Fermat’s Little Theorem. This argument shows that n | 240
is sufficient.

To show n | 240 is necessary, suppose n has property Q, and let n = 2a · k, where k is odd. If
k > 1, then (k− 2, n) = 1, so by Q we conclude that n | (k− 2)4 − 1. Then k | (k− 2)4 − 1, but
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(k − 2)4 ≡ (−2)4 ≡ 16 (mod k), so k | 15. Now, since (11, n) = 1, n | 114 − 1, so 2a | 114 − 1,
resulting in a ≤ 4. Thus n | 240 is also necessary.

The number of natural numbers n such that property P holds is simply the number of positive
integer divisors of 240, which is (4 + 1)(1 + 1)(1 + 1) = 20 .

14. Find constants α and c such that the following limit is finite and nonzero:

c = lim
n→∞

e
(
1− 1

n

)n − 1
nα

.

Give your answer in the form (α, c).

Answer: (−1, −1/2)

Solution 1: Take x = 1/n and let F (x) = e(1− x)1/x. Then we have

F (x) = e(1− x)1/x = exp
(

1 +
log(1− x)

x

)
= exp

(
−x

2
− x2

3
− x3

4
· · ·
)

since log(1−x) has Taylor expansion −x−x2/2−x3/3−· · · . Especially observe that F (0) = 1,
so when α = −1 the limit can be represented as a derivative of F , as follows:

lim
n→∞

e
(
1− 1

n

)n − 1
1/n

= lim
x→0

F (x)− F (0)
x

= F ′(0) = −1
2
.

Solution 2: Observe that if α ≥ 0 then the limit would be zero, so therefore α < 0. This
suggests that we should replace 1

n = x, so the limit becomes

c = lim
x→0

e(1− x)1/x − 1
x−α

.

Applying L’Hôpital’s Rule yields

c = lim
x→0

e(1− x)1/x
(

1
x2−x

− ln(1−x)
x2

)
−αx−α−1

.

Observe that ln(1− x) ≈ −x− x2

2 , and that limx→0 e(1− x)1/x, so therefore the numerator is

lim
x→0

e(1− x)1/x

(
1

x2 − x
− ln(1− x)

x2

)
= lim

x→0

(
1

x2 − x
− ln(1− x)

x2

)
= lim

x→0

(
1

x2 − x
+

x + x2

2

x2

)
= lim

x→0

(
1

x2 − x
+

1
x

+
1
2

)
= lim

x→0

(
1

x− 1
+

1
2

)
= −1

2
.

This is nonzero, so therefore our desired α is α = −1, with limit −1/2, and our final answer is
(−1,−1/2) .

15. Sean thinks packing is hard, so he decides to do math instead. He has a rectangular sheet that
he wants to fold so that it fits in a given rectangular box. He is curious to know what the optimal
size of a rectangular sheet is so that it’s expected to fit well in any given box. Let a and b be
positive reals with a ≤ b, and let m and n be independently and uniformly distributed random
variables in the interval (0, a). For the ordered 4-tuple (a, b, m, n), let f(a, b, m, n) denote the
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ratio between the area of a sheet with dimension a×b and the area of the horizontal cross-section
of the box with dimension m×n after the sheet has been folded in halves along each dimension
until it occupies the largest possible area that will still fit in the box (because Sean is picky, the
sheet must be placed with sides parallel to the box’s sides). Compute the smallest value of b

a
that maximizes the expectation f .

Answer: e−1+
√

1+2 ln(2)2

Solution: First, note that for fixed a, b, m, and n, f(a, b, m, n) = f(a, b, m/2, n) = f(a, b, m, n/2)
because we can go from an optimal sheet folding in one case to an optimal sheet folding in an-
other case by either folding or unfolding the sheet in half, which scales the sheet’s folded area
by the same amount as the box’s cross-sectional area. This implies that we can tile the region
m ∈ (0, a), n ∈ (0, a) with an infinite number of rectangles for which the expectation of f is the
same inside each rectangle. In particular, the set R of these rectangles is the set of all rectangles
bounded by points of the form ( a

2x , a
2y ) and ( a

2x+1 , a
2y+1 ) in mn-space for nonnegative integers x

and y. The expectation of f over the whole region is the same as the expectation of f inside
any one of these rectangles. Let us choose to examine the rectangle where we have m ∈ [a/2, a),
n ∈ [a/2, a). Clearly, it is optimal to fold the sheet exactly once in the dimension where the
sheet has length a. For the other dimension, we may assume that b ∈ [a, 2a) because if b ≥ 2a,
we are forced to fold it anyways until b < 2a. Now, we only have to fold in the b dimension
once if b/2 < max(m,n), and otherwise we must fold twice. Therefore, the expected value of f
is equal to

4
a2

∫ a

a/2

∫ a

a/2

(a/2)(b/2)(1/2)H(b/2−max(m,n))

mn
dm dn,

where H(x) is the Heaviside Step Function (defined as H(x) = 1 if x ≥ 0 and 0 otherwise).

We can compute this integral by noticing that it is equal to

4
a2

(∫ a

a/2

∫ a

a/2

ab/4
mn

dm dn−
∫ b/2

a/2

∫ b/2

a/2

ab/8
mn

dm dn

)
.

Hence, this problem relies on evaluating∫ d

c

∫ d

c

1
xy

dx dy =
∫ d

c

ln(d)− ln(c)
y

dy = (ln(d)− ln(c))2 = ln(d/c)2.

Plugging in, we get that the original integral equals

4
a2

((ab/4) ln(2)2 − (ab/8) ln(b/a)2) =
b

2a
(2 ln(2)2 − ln(b/a)2).

Let k = b/a, so that the expectation we are maximizing is g(k) = k
2 (2 ln(2)2 − ln(k)2) over the

domain k ∈ [1, 2). The derivative of g is

1
2
(2 ln(2)2 − ln(k)2) +

(
−2 ln(k)

k

)(
k

2

)
= −1

2
(ln(k)2 + 2 ln(k)− 2 ln(2)2),

which we set to zero, getting

ln(k) =
−2±

√
4 + 8 ln(2)2

2
= −1±

√
1 + 2 ln(2)2.
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We now need to check two final things. First, we must see if either of these solutions to g′(k) = 0
are in the interval (1, 2). Only the positive solution to the above quadratic could possibly result
in k being in greater than 1 to begin with. The easiest way to see that this gives us a value in
the interval (1, 2) is by noticing that g(1) = g(2) = ln(2)2 (since the k = 1 and k = 2 cases both
result in the folded sheet having the same area, namely a/2× a/2, for all choices of m and n),
so we are guaranteed a point with zero derivative in the interval (1, 2) by Rolle’s Theorem.

Additionally, we must check that this is a local maximum and not a minimum. We claim here
that g(k) is concave down on the interval (1, 2), so what we have found is a local maximum.
First, ln(k)2 is concave up on (1, 2) because

d2

dk2
ln(k)2 =

2− 2 ln(k)
k2

,

which is positive when ln(k) < 1 ⇐⇒ k < e. Hence, 2 ln(2)2 − ln(k)2 is concave down in the
same interval. It is also clearly decreasing. Finally, we have for generic functions f and g that if
f(x) = xg(x), then f ′(x) = g(x)+xg′(x) and f ′′(x) = 2g′(x)+xg′′(x), so on an interval where g
is decreasing and concave down and x is positive, then f is guaranteed to also be concave down.
This scenario holds for our function g(k), so it is concave down.

Hence, report e−1+
√

1+2 ln(2)2 .


