1. In $\triangle A B C$, the altitude to $\overline{A B}$ from $C$ partitions $\triangle A B C$ into two smaller triangles, each of which is similar to $\triangle A B C$. If the side lengths of $\triangle A B C$ and of both smaller triangles are all integers, find the smallest possible value of $A B$.

## Answer: 25

Solution: Let the altitude from $C$ to $A B$ intersect $\overline{A B}$ at $D$. Note that $\angle A$ and $\angle B$ must be acute since $A D$ partitions $A B C$ into two triangles. Since triangles $A D C$ and $A D B$ each contain right angles, we conclude that $\angle A C B$ must be right.
Now, we must have $\triangle A B C \sim \triangle A C D \sim \triangle C B D$. We now have enough information to determine $A D, A B$, and $C D$ in terms of $A B, B C$, and $C A$, which we denote as $c, a$, and $b$, respectively. We have

$$
\begin{aligned}
& \frac{b}{A D}=\frac{c}{b} \Longrightarrow A D=\frac{b^{2}}{c} \\
& \frac{a}{B D}=\frac{c}{a} \Longrightarrow B D=\frac{a^{2}}{c} \\
& \frac{1}{2} C D \cdot c=\frac{1}{2} a b \Longrightarrow C D=\frac{a b}{c} .
\end{aligned}
$$

Obviously, $(a, b, c)$ has to be in the form $(k x, k y, k z)$ where $(x, y, z)$ is a Pythagorean triple with no common factors, and $k$ is a positive integer. Note that in particular $x, y$, and $z$ must be pairwise coprime, because of the constraint $x^{2}+y^{2}=z^{2}$.
Given this, we need to find $k$ such that

$$
k z\left|k^{2} y^{2} \Longleftrightarrow z\right| k y^{2} \Longleftrightarrow z \mid k
$$

so the smallest such $k$ is when $k=z$. This choice makes $B D$ and $C D$ integral as well, so given any Pythagorean triple $(x, y, z)$ with pairwise coprime entries, the minimum $k$ required equals $z$, and the minimum possible value of $c$ is $z^{2}$. The smallest such Pythagorean triple is $(3,4,5)$, so report 25 .
2. Four points $O, A, B$, and $C$ satisfy $O A=O B=O C=1, \angle A O B=60^{\circ}$, and $\angle B O C=90^{\circ}$. $B$ is between $A$ and $C$ (i.e. $\angle A O C$ is obtuse). Draw three circles $O_{a}, O_{b}$, and $O_{c}$ with diameters $O A, O B$, and $O C$, respectively. Find the area of region inside $O_{b}$ but outside $O_{a}$ and $O_{c}$.
Answer: $(1+\sqrt{3}) / 8$
Solution: Let $D, E$, and $F$ be the midpoints of $B C, C A$, and $A B$, respectively. Observe that $O_{a}$ goes through $E$ and $F, O_{b}$ goes through $D$ and $F$, and $O_{c}$ goes through $D$ and $E$; the radii to these points are all midlines of some triangle (either $A O B, A O C$, or $B O C$ ) and are parallel to sides of length 1. Hence, the region $O_{b} \backslash\left(O_{a} \cup O_{c}\right)$ has four vertices $D, E, F$, and $B$ : along $D E$ and $E F$ the boundary is concave with the shape of an arc of radius 1, while along $F B$ and $B D$ it is convex. But note that $D E F B$ is a parallelogram, so $D E=B F$. This implies that two arcs-one from $D$ to $E$ coming from $O_{c}$ and the other from $B$ to $F$ coming from $O_{b}$-are congruent, so the convex region outside segment $F B$ can be fit into the concave region inside segment $D E$. Thinking similarly for $E F$ and $D B$ we have that the area of $O_{b} \backslash\left(O_{a} \cup O_{c}\right)$ is precisely the area of parallelogram $D E F B$. Thus, the answer is $|A B C| / 2=\frac{1}{2}\left(\frac{1}{2}+\frac{\sqrt{3}}{4}-\frac{1}{2} \sin 150^{\circ}\right)=(1+\sqrt{3}) / 8$. This problem can also be solved by use of the Principle of Inclusion-Exclusion: in particular, the desired region has area of

$$
O_{b}-\left(O_{a} \cap O_{b}+O_{c} \cap O_{b}-O_{a} \cap O_{b} \cap O_{c}\right)
$$

where it is clear that $O_{a} \cap O_{b} \cap O_{c}=O_{a} \cap O_{c}$ and is thus easily computable.
3. Circles with centers $O_{1}, O_{2}$, and $O_{3}$ are externally tangent to each other and have radii $1, \frac{1}{2}$, and $\frac{1}{4}$, respectively. Now for $i>3$, let circle $O_{i}$ be defined as the circle externally tangent to circles $O_{i-1}$ and $O_{i-2}$ with radius $2^{1-i}$ that is farther from $O_{i-3}$. As $n$ approaches infinity, the area of triangle $O_{1} O_{2} O_{n}$ approaches the value $A$. Find $A$.
Answer: $\frac{\sqrt{14}}{6}$
Solution: First, note that all triangles $O_{i} O_{i+1} O_{i+2}$ are similar (for $i \geq 1$ ). In particular, this implies that for all such $i, m \angle O_{i+1} O_{i+3} O_{i+2} \cong m \angle O_{i} O_{i+2} O_{i+1}$ and $m \angle O_{i+3} O_{i+1} O_{i+2} \cong$ $m \angle O_{i+4} O_{i+2} O_{i+3}$. Hence, $\angle O_{i} O_{i+2} O_{i+4}=\pi$ i.e. the points are collinear.
From here, there are many ways to proceed. One way is to note that the collinearity of all $O_{2 n}$ and all $O_{2 n+1}$ implies that the desired area is simply the infinite sum of areas $\sum_{i=1}^{\infty}\left(O_{i} O_{i+1} O_{i+2}\right)$. $O_{1} O_{2} O_{3}$ has side lengths $\frac{3}{2}$, $\frac{5}{4}$, and $\frac{3}{4}$, so its area is $\frac{1}{16}$ the area of a 3-5-6 triangle, which by Heron's Formula is $\sqrt{7 \cdot 4 \cdot 2 \cdot 1}=2 \sqrt{14}$. Furthermore, for all $i>1, O_{i} O_{i+1} O_{i+2}$ has $\frac{1}{4}$ the area of $O_{i-1} O_{i} O_{i+1}$, so the desired sum is geometric with first term $\frac{\sqrt{14}}{8}$ and common ratio $\frac{1}{4}$. Hence, report $\frac{\frac{\sqrt{14}}{8}}{1-\frac{1}{4}}=\frac{\sqrt{14}}{6}$.

