1. Compute $1^{2}-2^{2}+3^{2}-\cdots-18^{2}+19^{2}-20^{2}$.

Answer: - 210
Solution: Note that $(2 n+1)^{2}-(2 n+2)^{2}=-4 n-3$. Therefore, the sum is equivalent to $\sum_{i=0}^{9}-2 i-3=-2(9)(10)-30=-210$.
2. Reimu and Marisa are playing a game with 2012 coins. Reimu flips all 2012 coins, and then is permitted to flip any subset of the 2012 coins exactly once more. After this, Reimu pays Marisa $\$ 2$ for every head on the table, whereas Marisa pays Reimu $\$ 1$ for every tail on the table. Who is more likely to earn a profit, and what is the expected profit for that person, in dollars?

Answer: Reimu, \$503.

Solution: We compute the expected profit for a game using 1 coin and then multiply this by 2012. We are allowed to do this by linearity of expectation. If Reimu flips the coin and gets a tail, then she receives $\$ 1$ guaranteed. If Reimu flips the coin and gets a head instead, she then reflips the coin and gets $\$ 1$ with probability $\frac{1}{2}$ and loses $\$ 2$ with probability $\frac{1}{2}$. Therefore, Reimu expects to win $1\left(\frac{1}{2}+\frac{1}{4}\right)-2\left(\frac{1}{4}\right)=0.25$ dollars. Multiplying by 2012, Reimu expects to win $\$ 503$.
3. We define n to be a squarefree integer if, for every prime p, p^{2} does not divide n. Let $f(n)$ be the sum of the reciprocals of all the divisors of n. We define n to be an amazing integer if $f(n)=2$. How many squarefree amazing integers are there?

Answer: 1

Solution: Note that $f(n)=\frac{\sigma(n)}{n}=\prod_{i=1}^{k} \frac{p_{i}+1}{p_{i}}$. In order for $f(n)$ to be integral, the only primes that can divide n are 2 and 3 , since those are the only consecutive primes. Note that $f(6)=2$, but 1,2 , and 3 do not satisfy this constraint. Therefore, there is exactly 1 squarefree amazing integer.

