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1. What is
∫ 10
0 (x− 5) + (x− 5)2 + (x− 5)3 dx?

Answer: 250
3

Solution: This integral is equal to∫ 5

−5
x + x2 + x3 dx =

∫ 5

−5
x2 dx =

(
53

3
− (−5)3

3

)
=

250
3

.

2. Find the maximum value of ∫ 3π/2

−π/2
sin(x)f(x) dx

subject to the constraint |f(x)| ≤ 5.

Answer: 20

Solution: Clearly we want to maximize f(x) when sin (x) ≥ 0 and minimize f(x) when sin (x) <
0. We do this by setting f(x) = 5 in the first case and f(x) = −5 in the second case. Noting
that the bounds of integration cover precisely one full period of sin, we see that the integral
becomes equivalent to twice the integral of 5 sin (x) over the half period where sin (x) ≥ 0. This
results in 20 .

3. Calculate ∫ 35

25

1
x− x3/5

dx.

Answer: 5
2
ln 8

3

Solution: Note that we can write the integral as∫ 35

25

1
x3/5(x2/5 − 1)

dx.

We solve via u-substitution. Let u = x2/5 − 1:

du =
2
5
x−3/5 dx =⇒ dx =

5
2
x3/5 du.

The integral becomes
5
2

∫ 32−1

22−1

x3/5

x3/5 · u
du =

5
2

∫ 8

3

1
u

du,

which evaluates to
5
2
(ln 8− ln 3) =

5
2

ln
8
3

.

4. Compute the x-coordinate of the point on the curve y =
√

x that is closest to the point (2, 1).

Answer: 2+
√

3
2

Solution: We want to minimize the distance between the points (a2, a) and (2, 1). We can
equivalently minimize the square of the distance between those two points, which is

(2− a2)2 + (1− a)2 = a4 − 3a2 − 2a + 5.
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The derivative of this function is 4a3−6a−2, which can be factored as 2(a+1)(2a2−2a−1). The

roots of this cubic are therefore a = −1,
1±

√
3

2
. Two of the roots are negative and therefore

invalid, so a =
1 +

√
3

2
and a2 =

2 +
√

3
2

.

5. Let

f(x) = x +
x2

2
+

x3

3
+

x4

4
+

x5

5
,

and set g(x) = f−1(x). Compute g(3)(0).

Answer: 1

Solution 1: The inverse function rule tells us that

g′(x) =
[
f ′(g(x))

]−1
.

Using this and the fact that g(0) is clearly equal to zero, this problem can be solved with a
straightforward bash.

Solution 2: We begin by observing that we know by the inverse function rule that we will not
need to know any derivatives of f past its third derivative. Since the first three derivatives of
f at zero agree with those of the function − log (1− x) (by Taylor series expansion), we can
assume f(x) = − log (1− x). Now,

y = − log (1− x) =⇒ −y = log (1− x) =⇒ e−y = 1− x =⇒ x = 1− e−y

so g(y) = 1− e−y and therefore g(3)(0) = e−0 = 1 .

6. Compute

lim
x→0

(
sinx

x

) 1
1−cos x

.

Answer: e−1/3

Solution 1: We take logs and evaluate by L’Hopital’s rule:

lim
x→0

log

[(
sinx

x

) 1
1−cos x

]
= lim

x→0

log(sinx)− log x

1− cos x
= lim

x→0

cos x
sin x −

1
x

sinx
= lim

x→0

x cos x− sinx

x sin2 x

= lim
x→0

−x sinx

sin2 x + 2x sinx cos x
= lim

x→0

−x

sinx + 2x cos x
= lim

x→0

−1
cos x + 2 cos x− 2x sinx

= −1
3
.

Therefore, the answer is e−1/3.

Solution 2: We can approximate sin x and cos x by their Taylor series. Applying substitutions
then yields

lim
x→0

(
sinx

x

) 1
1−cos x

= lim
x→0

(
1− x2

6

) 2
x2

= lim
x→0

(
1 +

x2

6

)− 2
x2

= lim
x→∞

(
1 +

1
6x2

)−2x2

= lim
x→∞

(
1 +

1
x

)−x/3

= e−1/3

because e = limx→∞(1 + 1
x)x.
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7. A differentiable function g satisfies∫ x

0
(x− t + 1)g(t) dt = x4 + x2

for all x ≥ 0. Find g(x).

Answer: 12x2 − 24x + 26 − 26e−x

Solution: First differentiate the equation with respect to x:

g(x) +
∫ x

0
g(t) dt = 4x3 + 2x.

Differentiate again to obtain
g′(x) + g(x) = 12x2 + 2.

The solution 12x2 − 24x + 26 can be found using the method of undetermined coefficients, so
the general solution will be

g(x) = 12x2 − 24x + 26 + Ce−x

for some constant C. By substituting x = 0 into the first equation, we see that g(0) = 0. We

therefore find that C = −26, making the answer 12x2 − 24x + 26− 26e−x .

8. Compute ∫ ∞

0

lnx

x2 + 4
dx.

Answer: π ln 2
4

Solution: Substitute x = 2 tan θ to get∫ ∞

0

lnx

x2 + 4
dx =

1
2

∫ π/2

0
ln(2 tan θ) dθ =

1
2
· π

2
ln 2 +

1
2

∫ π/2

0
ln(tan θ) dθ.

We will now show that this final integral is zero by substituting u = π/2− θ to yield∫ π/2

0
ln(tan θ) dθ =

∫ π/2

0
ln
(
tan

(π

2
− θ
))

dθ

=
∫ π/2

0
ln
(

1
tan θ

)
dθ = −

∫ π/2

0
ln(tan θ) dθ,

which gives us what we wanted, so the answer is therefore
π ln 2

4
.

9. Find the ordered pair (α, β) with non-infinite β 6= 0 such that lim
n→∞

n2√
1!2! · · ·n!

nα
= β holds.

Answer: (1/2, e−3/4)

Solution 1: Taking the logarithm of 1!2! · · ·n!, we find

ln(1!2! · · ·n!) = ln 1 + (ln 1 + ln 2) + (ln 1 + ln 2 + ln 3) + · · ·
= n ln 1 + (n− 1) ln 2 + · · ·+ lnn

= n ln
1
n

+ (n− 1) ln
2
n

+ · · ·+ ln
n

n
+

n(n + 1)
2

lnn.
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Dividing this by n2, we have

ln( n2√
1!2! · · ·n!) =

n + 1
2n

lnn +
1
n

(
n∑

m=1

n + 1−m

n
ln

m

n

)

As n goes to infinity, the sum will converge to the integral∫ 1

0
(1− x) ln x dx =

[
1
4
x2 − 1

2
x2 lnx− x + x lnx

]1

0

= −3
4

and the first term will approach 1
2 lnn, so if we subtract 1

2 lnn then this expression will converge
to −3

4 . Finally, by raising e to the power of each side, we have

lim
n→∞

n2√
1!2! · · ·n!
n1/2

= e−3/4 .

Solution 2: We take logs and approximate by Stirling’s approximation1. Here, we will be some-
what sloppy with our approximations, and freely use ∼ to indicate approximations that become
irrelevant in the limit. All of these calculations can be made rigorous, and such justification is
left as an exercise to the reader.

Stirling’s approximation says that log(n!) ∼ n log n− n. Using this, we have

log

(
n2√

1!2! · · ·n!
nα

)
=

1
n2

log(1!2! · · ·n!)− α log n =
1
n2

n∑
k=1

log(k!)− α log n

∼ 1
n2

n∑
k=1

(k log k − k)− α log n =
1
n2

n∑
k=1

(k log k)− 1
n2

n(n + 1)
2

− α log n

Approximate n(n+1)
2 ∼ n2

2 and approximate the infinite sum by an integral (and integrate by
parts):

∼ 1
n2

∫ n

1
x log x dx− 1

2
− α log n =

1
n2

(
n2

2
log n− n2

4
+

1
4

)
− 1

2
− α log n

∼ 1
2

log n− 3
4
− α log n.

Therefore,

lim
n→∞

log

(
n2√

1!2! · · ·n!
nα

)
= lim

n→∞

[(
1
2
− α

)
log n− 3

4

]
,

which is finite only when 1
2 − α = 0, in which case α = 1

2 and the limit evaluates to −3
4 .

Therefore, we wish to compute

lim
n→∞

n2√
1!2! · · ·n!
n1/2

= exp

[
lim

n→∞
log

(
n2√

1!2! · · ·n!
nα

)]
= e−3/4 .

1http://en.wikipedia.org/wiki/Stirling’s approximation

http://en.wikipedia.org/wiki/Stirling's_approximation
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10. Find the maximum of ∫ 1

0
f(x)3 dx

given the constraints

−1 ≤ f(x) ≤ 1,

∫ 1

0
f(x) dx = 0.

Answer: 1/4

Solution 1: Consider the expression∫ 1

0
(f(x)− 1)

(
f(x) +

1
2

)2

dx.

Since f(x) ≤ 1 this expression is less than or equal to 0. Meanwhile, expanding the integrand
gives

(f(x)− 1)
(

f(x) +
1
2

)2

= f(x)3 − 3
4
f(x)− 1

4
,

so its integral is∫ 1

0
(f(x)− 1)

(
f(x)− 1

2

)2

dx =
∫ 1

0
f(x)3 dx− 3

4

∫ 1

0
f(x) dx− 1

4

∫ 1

0
dx

=
∫ 1

0
f(x)3 dx− 1

4
,

proving that the answer is at most 1/4. This expression is zero when f(x) = 1 or f(x) = −1/2,
so 1/4 is indeed the maximum value.

Solution 2: Let f+ and f− denote the positive and negative part of f respectively. Define
A+ = {f > 0} and A− = {f < 0}. Then f+ and f− are nonzero only on A+ and A−. Also the
condition on f means

0 ≤ f+(x), f−(x) ≤ 1,

∫ 1

0
f+(x) dx =

∫ 1

0
f−(x) dx = s.

We will fix s and try to optimize the value
∫

f3 =
∫

f3
+ −

∫
f3
−. For the maximum of

∫
f3
+, we

have the inequality f+(x)3 ≤ f+(x), and integrating it gives∫ 1

0
f+(x)3 dx ≤

∫ 1

0
f+(x) dx = s.

Equality holds when f+(x) is either 0 or 1 for all x. For the minimum of
∫

f3
−, we claim that

the minimum occurs when f− is constant on A−. From the inequality

a3 + b3

2
≥
(

a + b

2

)3

for 1 > a, b > 0, we speculate that the minimum is achieved when the values of f− are distributed
as close as possible. Then if we denote the length of A− to be l, the minimum occurs when
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f−(x) = s/l for all x ∈ A−, and the integral will be l · (s/l)3 = s3/l2. This can be made rigorous
by applying Jensen’s inequality∫

A−
φ(f−(x)) dx

l
≥ φ

(∫
A−

f−(x) dx

l

)

for the convex function φ(t) = t3. This gives the minimum as∫
f−(x)3 dx

l
≥ s3

l3
,

∫
f−(x)3 dx ≥ s3

l2
.

Meanwhile A+ should have length greater than s, since f+ is only nonzero on A+ and the integral
of f+ ≤ 1 over A+ has length at most A+. So we have 1− l ≥ s, l ≤ 1− s. Now our objective
integral is optimized to be the maximum of a single-variable function in s, as follows:∫ 1

0
f(x)3 dx ≤ s− s3

(1− s)2
.

We differentiate this in s to find the maximum. Since

d

ds

(
s− s3

(1− s)2

)
=

1− 3s

(1− s)3
,

its maximum is obtained at s = 1/3. Thus finally we can calculate our answer

1
3
− (1/3)3

(2/3)2
=

1
3
− 1

12
=

1
4

,

and equality occurs when f(x) = 1 on a set of length 1/3 and f(x) = −s/l = −1/2 elsewhere.


