1. The quadratic $x^2 - 4x + 2$ has two distinct roots, a and b. Compute the sum of the coefficients of the monic quadratic with roots $a^2 + b^2$ and $a^3 + b^3$.

Answer: 429

Solution: We know that a + b = 4 and ab = 2 from Vieta's. $a^2 + b^2 = (a + b)^2 - 2ab = 12$, while $a^3 + b^3 = (a + b)^3 - 3ab(a + b) = 40$. Therefore, our quadratic is (x - 12)(x - 40), and the sum of the coefficients of the quadratic can be obtained by evaluating the quadratic at x = 1, which gives us 429.

2. Find the minimum value of xy + xz + yz given that x, y, z are real and $x^2 + y^2 + z^2 = 1$.

Answer: $-\frac{1}{2}$ Solution: We note that $(x + y + z)^2 = (x^2 + y^2 + z^2) + 2(xy + xz + yz) = 1 + 2(xy + xz + yz)$. Since $(x + y + z)^2$ clearly has a minimum value of 0, it follows that xy + xz + yz is at least $\boxed{-1/2}$. This occurs, for example, when $x = -y = 1/\sqrt{2}$ and z = 0.

3. Find all solutions α with $0^{\circ} < \alpha < 90^{\circ}$ to the equation $1 + \sqrt{3} \tan(60^{\circ} - \alpha) = \frac{1}{\sin \alpha}$.

Answer: $30^{\circ}, 50^{\circ}$

Solution: Multiply both sides by $\cos(60^\circ - \alpha)$ and write 1 as $2\sin(30^\circ)$ and $\sqrt{3}$ as $2\cos(30^\circ)$ to get

$$2(\sin(30^{\circ})\cos(60^{\circ} - \alpha) + \cos(30^{\circ})\sin(60^{\circ} - \alpha)) = \frac{\cos(60^{\circ} - \alpha)}{\sin(\alpha)}$$

Applying the formula for the sine of a sum, we see that the left-hand-side is $2 \cdot \sin(30^\circ + 60^\circ - \alpha)$, or $2\cos(\alpha)$. Multiplying both sides by $\sin(\alpha)$ yields $2\sin(\alpha)\cos(\alpha) = \cos(60^\circ - \alpha)$, which can be rewritten

$$\sin(2\alpha) = \sin(\alpha + 30^\circ). \tag{1}$$

Therefore, either $2\alpha = \alpha + 30^{\circ}$ or $2\alpha + (\alpha + 30^{\circ}) = 180^{\circ}$, from which we obtain $\alpha = 30^{\circ}$ and $\alpha = 50^{\circ}$, respectively.