1. The quadratic $x^{2}-4 x+2$ has two distinct roots, a and b. Compute the sum of the coefficients of the monic quadratic with roots $a^{2}+b^{2}$ and $a^{3}+b^{3}$.
Answer: 429
Solution: We know that $a+b=4$ and $a b=2$ from Vieta's. $a^{2}+b^{2}=(a+b)^{2}-2 a b=12$, while $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)=40$. Therefore, our quadratic is $(x-12)(x-40)$, and the sum of the coefficients of the quadratic can be obtained by evaluating the quadratic at $x=1$, which gives us 429 .
2. Find the minimum value of $x y+x z+y z$ given that x, y, z are real and $x^{2}+y^{2}+z^{2}=1$.

Answer: - $\frac{1}{2}$
Solution: We note that $(x+y+z)^{2}=\left(x^{2}+y^{2}+z^{2}\right)+2(x y+x z+y z)=1+2(x y+x z+y z)$. Since $(x+y+z)^{2}$ clearly has a minimum value of 0 , it follows that $x y+x z+y z$ is at least $-1 / 2$. This occurs, for example, when $x=-y=1 / \sqrt{2}$ and $z=0$.
3. Find all solutions α with $0^{\circ}<\alpha<90^{\circ}$ to the equation $1+\sqrt{3} \tan \left(60^{\circ}-\alpha\right)=\frac{1}{\sin \alpha}$.

Answer: $30^{\circ}, 50^{\circ}$
Solution: Multiply both sides by $\cos \left(60^{\circ}-\alpha\right)$ and write 1 as $2 \sin \left(30^{\circ}\right)$ and $\sqrt{3}$ as $2 \cos \left(30^{\circ}\right)$ to get

$$
2\left(\sin \left(30^{\circ}\right) \cos \left(60^{\circ}-\alpha\right)+\cos \left(30^{\circ}\right) \sin \left(60^{\circ}-\alpha\right)\right)=\frac{\cos \left(60^{\circ}-\alpha\right)}{\sin (\alpha)}
$$

Applying the formula for the sine of a sum, we see that the left-hand-side is $2 \cdot \sin \left(30^{\circ}+60^{\circ}-\alpha\right)$, or $2 \cos (\alpha)$. Multiplying both sides by $\sin (\alpha)$ yields $2 \sin (\alpha) \cos (\alpha)=\cos \left(60^{\circ}-\alpha\right)$, which can be rewritten

$$
\begin{equation*}
\sin (2 \alpha)=\sin \left(\alpha+30^{\circ}\right) \tag{1}
\end{equation*}
$$

Therefore, either $2 \alpha=\alpha+30^{\circ}$ or $2 \alpha+\left(\alpha+30^{\circ}\right)=180^{\circ}$, from which we obtain $\alpha=30^{\circ}$ and $\alpha=50^{\circ}$, respectively.

