1. Compute the minimum possible value of

$$
(x-1)^{2}+(x-2)^{2}+(x-3)^{2}+(x-4)^{2}+(x-5)^{2}
$$

for real values of x.
Answer: 10
Solution: We know that this expression has to be a concave-up parabola (i.e. a parabola that faces upwards), and there is symmetry across the line $x=3$. Hence, we conclude that the vertex of the parabola occurs at $x=3$. Plugging in, we get $4+1+0+1+4=10$.
2. Find all real values of x such that $\left(\frac{1}{5}\left(x^{2}-10 x+26\right)\right)^{x^{2}-6 x+5}=1$.

Answer: 1, 3, 5, 7

Solution: Clearly, the above equation holds if if $\frac{1}{5}\left(x^{2}-10 x+26\right)=1$ or $x^{2}-6 x+5=0$, from which we obtain 3,7 and 1,5 , respectively. To see that these are the only possible values for x, note that $x^{2}-10 x+26=(x-5)^{2}+1$ is always positive. Since for positive a, the function $f(y)=a^{y}$ is strictly increasing, the only solution to $a^{y}=1$ is $y=0$.
3. Express $\frac{2^{3}-1}{2^{3}+1} \times \frac{3^{3}-1}{3^{3}+1} \times \frac{4^{3}-1}{4^{3}+1} \times \cdots \times \frac{16^{3}-1}{16^{3}+1}$ as a fraction in lowest terms.

Answer: $\frac{91}{136}$
Solution: We note

$$
\prod_{n=2}^{k} \frac{n^{3}-1}{n^{3}+1}=\prod_{n=2}^{k} \frac{(n-1)\left(n^{2}+n+1\right)}{(n+1)\left(n^{2}-n+1\right)}=\left(\prod_{n=2}^{k} \frac{n-1}{n+1}\right)\left(\prod_{n=2}^{k} \frac{n^{2}+n+1}{n^{2}-n+1}\right)
$$

Each product telescopes, yielding $\frac{1 \cdot 2}{k \cdot(k+1)} \cdot \frac{k^{2}+k+1}{3}$. Evaluating at $k=16$ yields $\frac{91}{136}$.
4. If x, y, and z are integers satisfying $x y z+4(x+y+z)=2(x y+x z+y z)+7$, list all possibilities for the ordered triple (x, y, z).
Answer: $(1,1,1),(1,3,3),(3,1,3),(3,3,1)$
Solution: Rearranging the given equality yields $x y z-2(x y+x z+y z)+4(x+y+z)-8=-1$. But the left side factors as $(x-2)(y-2)(z-2)$. Since all quantities involved are integral, we must have each factor equal to ± 1. It is easy to verify that the only possibilities for (x, y, z) are those listed.
5. The quartic (4th-degree) polynomial $P(x)$ satisfies $P(1)=0$ and attains its maximum value of 3 at both $x=2$ and $x=3$. Compute $P(5)$.
Answer: - 24
Solution: Consider the polynomial $Q(x)=P(x)-3 . \quad Q$ has roots at $x=2$ and $x=3$. Moreover, since these roots are maxima, they both have multiplicity 2. Hence, Q is of the form $a(x-2)^{2}(x-3)^{2}$, and so $P(x)=a(x-2)^{2}(x-3)^{2}+3 . P(1)=0 \Longrightarrow a=-\frac{3}{4}$, allowing us to compute $P(5)=-\frac{3}{4}(9)(4)+3=-24$.
6. There exist two triples of real numbers (a, b, c) such that $a-\frac{1}{b}, b-\frac{1}{c}$, and $c-\frac{1}{a}$ are the roots to the cubic equation $x^{3}-5 x^{2}-15 x+3$ listed in increasing order. Denote those (a_{1}, b_{1}, c_{1}) and $\left(a_{2}, b_{2}, c_{2}\right)$. If a_{1}, b_{1}, and c_{1} are the roots to monic cubic polynomial f and a_{2}, b_{2}, and c_{2} are the roots to monic cubic polynomial g, find $f(0)^{3}+g(0)^{3}$.

Answer: - 14

Solution: By Viéta's Formulas, we have that $f(0)=-a_{1} b_{1} c_{1}$ and $g(0)=-a_{2} b_{2} c_{2}$. Additionally, $\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)=-3$ and $\left(a-\frac{1}{b}\right)+\left(b-\frac{1}{c}\right)+\left(c-\frac{1}{a}\right)=5$. Expanding the first expression yields $-3=a b c-\frac{1}{a b c}-\left((a+b+c)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=a b c-\frac{1}{a b c}-5$. This is equivalent to $(a b c)^{2}-2(a b c)-1=0$, so $a b c=1 \pm \sqrt{2}$. It follows that $f(0)^{3}+g(0)^{3}=-(1+\sqrt{2})^{3}-(1-\sqrt{2})^{3}=-14$.
7. The function $f(x)$ is known to be of the form $\prod_{i=1}^{n} f_{i}\left(a_{i} x\right)$, where a_{i} is a real number and $f_{i}(x)$ is either $\sin (x)$ or $\cos (x)$ for $i=1, \ldots, n$. Additionally, $f(x)$ is known to have zeros at every integer between 1 and 2012 (inclusive) except for one integer b. Find the sum of all possible values of b.

Answer: 2047

Solution: The possible values of b are the powers of two not exceeding 2012 (including $2^{0}=1$). The following proof uses the fact that the zeroes of sine and cosine are precisely numbers of the form $t \pi$ and $(t+1 / 2) \pi$, respectively, for t an integer.

Suppose b is not a power of 2 . Then it can be written as $2^{m}(1+2 k)$ for $m \geq 0, k>0$. Since $2^{m}<b$, by assumption one of the f_{i} must have a root at 2^{m}. But then this same f_{i} must have a root at b :

- If $f_{i}(x)=\sin (a x)$ and $f_{i}\left(2^{m}\right)=0$, then $2^{m} a=t \pi$ for some integer t, so

$$
f_{i}(b)=\sin (b a)=\sin \left((1+2 k) 2^{m} a\right)=\sin ((1+2 k) t \pi)=0 .
$$

- If $f_{i}(x)=\cos (a x)$ and $f_{i}\left(2^{m}\right)=0$, then $2^{m} a=(t+1 / 2) \pi$ for some integer t so

$$
f_{i}(b)=\cos (b a)=\cos \left((1+2 k) 2^{m} a\right)=\cos ((1+2 k)(t+1 / 2) \pi)=\cos ((t+k+2 k t+1 / 2) \pi)=0
$$

This is a contradiction, so b must be a power of 2 .
For each b of the form 2^{m}, we can construct an f that works by using cosine terms to cover integers preceding b and sine terms thereafter:

$$
f(x)=\left(\prod_{i=1}^{m} \cos \left(\pi x / 2^{i}\right)\right)\left(\prod_{j=b+1}^{2012} \sin (\pi x / j)\right)
$$

has a root at every positive integer at most 2012 except b.
Hence, our final answer is $1+2+4+\ldots+1024=2048-1=2047$.
8. For real numbers (x, y, z) satisfying the following equations, find all possible values of $x+y+z$.

$$
\begin{aligned}
x^{2} y+y^{2} z+z^{2} x & =-1 \\
x y^{2}+y z^{2}+z x^{2} & =5 \\
x y z & =-2
\end{aligned}
$$

Answer: 2 or $\sqrt[3]{\frac{1}{2}}$
Solution 1: Let $x / y=a, y / z=b$, and $z / x=c$. Then $a b c=1$. By dividing the first two equations by the third equation, we have $a+b+c=-5 / 2$ and $1 / a+1 / b+1 / c=a b+b c+c a=1 / 2$. So a, b, c are roots of $2 X^{3}+5 X^{2}+X-2=0$. By observation, the three roots of this equation
are $-2,-1$, and $1 / 2$. Without loss of generality, assume that $a=-1$ and $y=-x$. If $c=-2$, then we have $z=-2 x$, so $x y z=2 x^{3}=-2$, and thus $x=-1$. In this case we have

$$
(x, y, z)=(-1,1,2)
$$

If $c=1 / 2$, then $z=x / 2$, so $x y z=-x^{3} / 2=-2$, or $x=\sqrt[3]{4}$. In this case we have

$$
(x, y, z)=\left(\sqrt[3]{4},-\sqrt[3]{4}, \sqrt[3]{\frac{1}{2}}\right)
$$

It follows that $x+y+z$ can be either 2 or $\sqrt[3]{\frac{1}{2}}$.
Solution 2: We have $(x+y)(y+z)(z+x)=x^{2} y+y^{2} z+z^{2} x+x y^{2}+y z^{2}+z x^{2}+2 x y z=-1+5+$ $2(-2)=0$. Hence one of the quantities $x+y, y+z, z+x$ is 0 . Suppose WLOG that $x=-y$, so that $y^{2} z=2$ and $y^{3}+y^{2} z-y z^{2}=-1$. The latter equation can be rewritten as $2 y / z+2-2 z / y=-1$, or, setting $a=y / z, 2 a+3-2 / a=0$, giving the quadratic $2 a^{2}+3 a-2=(2 a-1)(a+2)=0$. Then $y=z / 2$ or $y=-2 z$, giving rise respectively to $z^{3}=8$ and $z^{3}=1 / 2$. Since $x+y=0$, we have $x+y+z=z=2$ or $\sqrt[3]{\frac{1}{2}}$.
9. Find the minimum value of $x y$, given that $x^{2}+y^{2}+z^{2}=7, x y+x z+y z=4$, and x, y, z are real numbers.
Answer: $\frac{1}{4}$
Solution 1: Note that $4 x y=(x+y-z)^{2}+2(x y+x z+y z)-\left(x^{2}+y^{2}+z^{2}\right)$. Since $(x+y-z)^{2}$ is non-negative, it follows that $4 x y$ is at least $2 \cdot 4-7=1$, so $x y$ is at least $1 / 4$.
We now aim to find a solution for which $x y=1 / 4$ (thereby proving our lower bound to be tight). We have seen that $x y=1 / 4$ implies that $x+y-z=0$, or $z=x+y$. Substituting into $x y+x z+y z=4$, we obtain $x^{2}+3 x y+y^{2}=4$. Subtracting $x y=1 / 4$ and $5 x y=5 / 4$ from this equation yields $(x+y)^{2}=15 / 4$ and $(x-y)^{2}=11 / 4$. Thus, one solution is $x+y=\frac{\sqrt{15}}{2}, x-y=$ $\frac{\sqrt{11}}{2}$, or $x=\frac{\sqrt{15}+\sqrt{11}}{4}, y=\frac{\sqrt{15}-\sqrt{11}}{4}, z=\frac{\sqrt{15}}{2}$.
Solution 2: We have $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 x z+2 y z=7+2 \cdot 4=15$. Note that minimizing $x y$ is equivalent to maximizing $x z+y z=(x+y) z$. Also note that this maximum value of $(x+y) z$ is certainly positive, and in fact we can assume $x+y$ and z are both positive, since otherwise we can replace x, y, z with $-x,-y,-z$ without changing any of our quantities. We can then apply AM-GM to find that $\sqrt{(x+y) z} \leq \frac{x+y+z}{2}$, or $(x+y) z \leq \frac{(x+y+z)^{2}}{4}=\frac{15}{4}$. Hence $x y \geq 4-\frac{15}{4}=\overline{\frac{1}{4}}$ and we proceed as in the first solution.
10. Let $X_{1}, X_{2}, \ldots, X_{2012}$ be chosen independently and uniformly at random from the interval $(0,1]$. In other words, for each X_{n}, the probability that it is in the interval ($\left.a, b\right]$ is $b-a$. Compute the probability that $\left\lceil\log _{2} X_{1}\right\rceil+\left\lceil\log _{4} X_{2}\right\rceil+\cdots+\left\lceil\log _{4024} X_{2012}\right\rceil$ is even. (Note: For any real number $a,\lceil a\rceil$ is defined as the smallest integer not less than a.)
Answer: $\frac{2013}{4025}$
Solution: To simplify notation, define $Y_{n}=\left\lceil\log _{2 n} X_{n}\right\rceil$.
We begin by computing the probability that Y_{n} is odd. $Y_{n}=-1$ if $-2<\log _{2 n} X_{n} \leq-1$, or $\frac{1}{(2 n)^{2}}<X_{n} \leq \frac{1}{2 n}$. Similarly, $Y_{n}=-3$ if $\frac{1}{(2 n)^{4}}<X_{n} \leq \frac{1}{(2 n)^{3}}$, and so on. Adding up the lengths
of these intervals, we see that the probability that Y_{n} is odd is $\sum_{k=1}^{\infty} \frac{1}{(2 n)^{2 k-1}}-\frac{1}{(2 n)^{2 k}}$. This is a geometric series with first term $\frac{1}{2 n}\left(1-\frac{1}{2 n}\right)$ and ratio $\frac{1}{(2 n)^{2}}$, so its sum is

$$
\frac{\frac{1}{2 n}\left(1-\frac{1}{2 n}\right)}{1-\frac{1}{(2 n)^{2}}}=\frac{\frac{1}{2 n}}{\left(1+\frac{1}{2 n}\right)}=\frac{1}{2 n+1}
$$

Armed with this fact, we are now ready to solve the problem. One way to continue would be to note that the probability that Y_{1} is even is $2 / 3$, the probability that $Y_{1}+Y_{2}$ is even is $3 / 5$, the probability that $Y_{1}+Y_{2}+Y_{3}$ is even is $4 / 7$ and to show by induction that the probability that $Y_{1}+\cdots+Y_{n}$ is even is $\frac{n+1}{2 n+1}$. Below, we present an alternate approach.
Note that $Y_{1}+Y_{2}+\cdots+Y_{2012}$ is even if and only if $(-1)^{Y_{1}+Y_{2}+\cdots+Y_{2012}}=1$. Rewrite $(-1)^{Y_{1}+Y_{2}+\cdots+Y_{2012}}$ as $(-1)^{Y_{1}}(-1)^{Y_{2}} \cdots(-1)^{Y_{2012}}$, and note that because the Y_{n} are independent,

$$
\begin{equation*}
E\left[(-1)^{Y_{1}}(-1)^{Y_{2}} \cdots(-1)^{Y_{2012}}\right]=E\left[(-1)^{Y_{1}}\right] E\left[(-1)^{Y_{2}}\right] \cdots E\left[(-1)^{Y_{2012}}\right] \tag{1}
\end{equation*}
$$

where E denotes the expected value of the quantity. But $E\left[Y_{n}\right]=(+1) \cdot P\left(Y_{n}\right.$ is even $)+(-1)$. $P\left(Y_{n}\right.$ is odd $)$. We computed earlier that the probability that Y_{n} is odd is $\frac{1}{2 n+1}$, so $E\left[Y_{n}\right]=\frac{2 n-1}{2 n+1}$ and product in (1) is $\frac{1}{3} \cdot \frac{3}{5} \cdots \frac{4023}{4025}$, which telescopes to yield $\frac{1}{4025}$. Let p be the probability that $Y_{1}+Y_{2}+\cdots+Y_{2012}$ is even. We just found that $(+1)(p)+(-1)(1-p)=\frac{1}{4025}$, which we can solve to obtain $p=\frac{2013}{4025}$.

