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1. Let ABCD be a unit square. The point E lies on BC and F lies on AD. 4AEF is equilateral. GHIJ
is a square inscribed in 4AEF so that GH is on EF . Compute the area of GHIJ .

Answer: 312− 180
√
3

First let a be the length of AE. Then CE = a/
√

2, BE = 1 − a/
√

2 so AE2 = a2 = 1 + BE2 =
2−
√

2a+ a2/2. Solving it gives a2 + 2
√

2a− 4 = 0, (a+
√

2)2 = 6 so a =
√

6−
√

2.
Next let b be the length of IJ . Then AIJ is equilateral so AJ = b. Also JE = 2/

√
3b, so AE = a =

2+
√
3√

3
b, b = (2−

√
3)(
√

3)(
√

6−
√

2) =
√

2(9− 5
√

3). Squaring it gives 312− 180
√

3.

2. Find all integers x for which |x3 + 6x2 + 2x− 6| is prime.

Answer: 1, −1
The whole equation is ≡ 0 (mod 3), so x3 + 6x2 + 2x− 6 should be 3 or −3. The equation (x3 + 6x2 +
2x−6)2 = 32 can be rewritten using difference of squares as (x−1)(x2+7x−9)(x+1)(x2+5x−3) = 0,
so only 1 and −1 work for x.

3. Let A be the set of points (a, b) with 2 < a < 6,−2 < b < 2 such that the equation

ax4 + 2x3 − 2(2b− a)x2 + 2x+ a = 0

has at least one real root. Determine the area of A.

Answer: 12

After dividing the equation by 4x2, we can re-write it as

a

(
x

2
+

1

2x

)2

+

(
x

2
+

1

2x

)
− a = b.

Set y = x
2 + 1

2x , which has range (−∞,−1]∪ [1,∞). Therefore, we need all b in (−2, 2) such that b is in
the range of f(y) = ay2 + y− a for the domain y ∈ (−∞,−1]∪ [1,∞). The vertex of this parabola lies
at y = − 1

2a ∈ (−1/4,−1/12), so the desired range is just all values greater than f(−1) = −1. Hence,
A is the set of all points where −1 < b < 2 and 2 < a < 6, so the area is 12.

4. Three nonnegative reals x, y, z satisfy x + y + z = 12 and xy + yz + zx = 21. Find the maximum of
xyz.

Answer: 10

Consider the graphs of y = t3 − 12t2 + 21t and y = p(p ≤ 0). These two graphs intersect at three
points (counting multiplicity) if and only if there are three nonnegative x, y, z satisfying xyz = p. In
order for these two to intersect at three points, p should lie between the local maximum and the local
minimum of the cubic function y = t3 − 12t2 + 21t, so the maximal p will lie at the local maximum of
this cubic. Since y′ = 3t2 − 24t+ 21 = 3(t− 1)(t− 7), the local maximum occurs at t = 1, so the local

maximum is 13 − 12 · 12 + 21 · 1 = 10 (this can be achieved by letting (x, y, z) = (1, 1, 10)).
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5. Let 4ABC be equilateral. Two points D and E are on side BC (with order B,D,E,C), and satisfy
∠DAE = 30◦. If BD = 2 and CE = 3, what is BC?

B C

A

D E2 3

30◦

Answer: 5 +
√
19

Rotate the figure around A by 60◦ so that C coincides with B. Let B′, C ′, D′, E′ be the points
corresponding to B,C,D,E in the rotated figure. Since ∠E′AD = ∠E′AC ′ + ∠C ′AD = ∠EAC +
∠BAD = 30◦ = ∠EAD, E′A = EA and DA = D′A, one has E′D = ED. So BC = BD +DE + EC
can be found if we know E′D. But E′D =

√
E′B2 +BD2 − 2 · E′B ·BD · cos 120◦ =

√
19, so BC =

2 +
√

19 + 3 = 5 +
√

19.

B = C ′ C

A

D E

B′

D′

E′

6. Three numbers are chosen at random between 0 and 2. What is the probability that the difference
between the greatest and least is less than 1

4?

Answer: 11
256

Call the three numbers x, y, and z. By symmetry, we need only consider the case 2 ≥ x ≥ y ≥ z ≥ 0.
Plotted in 3D, the values of (x, y, z) satisfying these inequalities form a triangular pyramid with a leg-2
right isosceles triangle as its base and a height of 2, with a volume of 2 · 2 · 12 · 2 ·

1
3 = 4

3 . We now
need the volume of the portion of the pyramid satisfying x − z ≤ 1

4 . The equation z = x − 1
4 is a

plane which slices off a skew triangular prism along with a small triangular pyramid at one edge of
the large triangular pyramid. The prism has a leg- 14 right isosceles triangle as its base and a height
of 7

4 , so has volume 1
4 ·

1
4 ·

1
2 ·

7
4 = 7

27 . The small triangular pyramid also has a leg- 14 right isosceles
triangle as its base and a height of 1

4 , so has volume 1
4 ·

1
4 ·

1
2 ·

1
4 ·

1
3 = 1

3·27 . Then our probability is(
7
27 + 1

3·27
)
/
(
4
3

)
= 11/256.

7. Tony the mouse starts in the top left corner of a 3x3 grid. After each second, he randomly moves to an
adjacent square with equal probability. What is the probability he reaches the cheese in the bottom
right corner before he reaches the mousetrap in the center?

Answer: 1
7

Let x be the probability that Tony reaches the cheese before the mousetrap, starting from the top left.
Let y be the probability that Tony reaches the cheese before the mousetrap, starting from the top right
or the bottom left (which are symmetric).

After 2 moves from the top left there is 1
3 chance that Tony returns to the top left corner, there is

1
3 chance that Tony reaches the mousetrap, and there is 1

3 chance that Tony reaches the top right or
bottom left corners. This gives us the relation
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x =
1

3
x+

1

3
0 +

1

3
y.

After 2 moves from the top right corner there is 1
3 chance that Tony returns to the top right corner, 1

3
chance that Tony reaches the mousetrap, 1

6 chance that Tony reaches the top left corner, and 1
6 chance

that Tony reaches the cheese. This gives the relation

y =
1

3
y +

1

3
0 +

1

6
x+

1

6
.

Now we have a system of linear of equations and we solve, obtaining x = 1
7 .

8. Let A = (0, 0), B = (1, 0), and C = (0, 1). Divide AB into n equal segments, and call the endpoints
of these segments A = B0, B1, B2, · · · , Bn = B. Similarly, divide AC into n equal segments with
endpoints A = C0, C1, C2, · · · , Cn = C. By connecting Bi and Cn−i for all 0 ≤ i ≤ n, one gets
a piecewise curve consisting of the uppermost line segments. Find the equation of the limit of this
piecewise curve as n goes to infinity.

Answer:
√
x +
√
y = 1 or equivalent form

The limiting curve is the boundary of a region given by the union of all line segments connecting (q, 0)
and (0, 1 − q) for all numbers 0 ≤ q ≤ 1. Such a line segment has equation x

q + y
1−q = 1. Thus a

point (x0, y0) is in that region if and only if the equation x
q + y

1−q = 1, (1 − q)x + qy = q(1 − q) has

a solution in 0 ≤ q ≤ 1. Let F (q) = (1 − q)x + qy − q(1 − q) = q2 − (1 + x − y)q + x. Note that
F (0) = x ≥ 0 and F (1) = y ≥ 0, and the minimum of F at 1+x−y

2 is always between 0 and 1. So F has

a root in [0, 1] if and only if F ( 1+x−y
2 ) = − (1+x−y)2

4 + x ≤ 0. So 4x ≤ (1 + x− y)2, 2
√
x ≤ 1 + x− y,

y ≤ 1− 2
√
x+ x = (1−

√
x)2,

√
y ≤ 1−

√
x, and finally we have

√
x+
√
y ≤ 1.

9. Determine the maximum number of distinct regions into which 2011 circles of arbitrary size can par-
tition the plane.

Answer: 20112 − 2011 + 2 = 4042112

Let f(n) denote the maximum number of regions into which n circles can partition the plane. We will
show that f(n) is a quadratic polynomial in n. Indeed, let A be a planar arrangement of n circles.
Note that A is a graph: Each intersection point is a vertex, and the arcs connecting them are edges.
Having recognized this, we can apply Euler’s theorem, V − E + F = 2, to find the number of regions
(i.e., F ). It is easy to see that an arrangement with the maximum number of vertices is optimal. The

maximum number of vertices is V = 2

(
n

2

)
= n(n− 1), since each circle can intersect each other circle

in at most two vertices. In this optimal arrangement, each circle contains 2(n − 1) vertices and the
same number of edges; thus, the total number of edges is E = 2n(n − 1). Thus, the desired quantity
is f(n) = E − V + 2 = n2 − n+ 2, so our answer is 20112 − 2011 + 2 = 4042112.

Alternative Solution: As before, we apply Euler’s theorem for planar graphs. Given that circles
are defined by quadratic polynomials, it is clear that V and E are each quadratic in n. In particular,
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Euler’s theorem implies that F is quadratic in n. Moreover, it is easy to check that f(1) = 2, f(2) = 4,
and f(3) = 8. Interpolating gives f(n) = n2 − n+ 1, as in the first solution.

10. For positive reals x, y, and z, compute the maximum possible value of
xyz(x+ y + z)

(x+ y)2(y + z)2
.

Answer: 1
4

If we consider the triangle ABC with side length AB = x+ y, BC = y + z, CA = z + x, the equation
becomes

|ABC|2

AB2 ·BC2
=

sin2B

4
≤ 1

4
.

11. Find the diameter of an icosahedron with side length 1 (an icosahedron is a regular polyhedron with
20 identical equilateral triangle faces; a picture is given below).

Answer:

√
10+2

√
5

4

Note that opposite vertices of the icosahedron can be seen as vertices of pyramids whose bases are
regular pentagons of side length 1. Now, note that if we select two parallel diagonals of these two
pentagons, these two diagonals are also two sides of a rectangle whose other sides are length 1 and
whose diagonals are diameters of the icosahedron. The diagonal of the pentagon can be found with
similar triangles: in regular pentagon ABCDE, let AD andBE intersect at F. Angle chasing shows that

4ACD ∼ 4DEF , both are isosceles, and FE = FA, so we get that AD
1 = 1

AD−1 =⇒ AD = 1+
√
5

2 .

Hence, the diameter of the icosahedron equals

√
12 + ( 1+

√
5

2 )2 =

√
10+2

√
5

2 .

12. Find the boundary of the projection of the sphere x2 + y2 + (z − 1)2 = 1 onto the plane z = 0 with
respect to the point P = (0,−1, 2). Express your answer in the form f(x, y) = 0, where f(x, y) is a
function of x and y.

Answer: x2 − 4y − 4 = 0

Let O = (0, 0, 1) be the center of the sphere. For a point X = (x, y, 0) on the boundary of the
projection, the angle ∠XPO is constant as X varies, since it is just the angle between OP and any
tangent from P to the sphere. Considering the case when X = (0,−1, 0), we can see that ∠XPO = 45◦.

Writing this in terms of the dot product, one has (
−−→
PO ·

−−→
PX)2 = 1

2 |
−−→
PO|2|

−−→
PX|2, which is equivalent to

((0, 1,−1) · (x, y+ 1,−2))2 = 1
2 |(0, 1,−1)|2|(x, y+ 1,−2)|2, or (y+ 3)2 = x2 + (y+ 1)2 + 4. The answer

is x2 − 4y − 4 = 0.

13. Compute the number of pairs of 2011-tuples (x1, x2, ..., x2011) and (y1, y2, ..., y2011) such that xk =
x2k−1 − y2k−1 − 2 and yk = 2xk−1yk−1 for 1 ≤ k ≤ 2010, x1 = x22011 − y22011 − 2, and y1 = 2x2011y2011.

Answer: 22011

Define zk = xk + iyk. Then the equations are equivalent to zk+1 = zk
2 − 2, z2012 = z1. Let α be a

solution of z1 = α+ α−1 (which always has two distinct solutions unless z1 = 2 or −2). Then one can

check by induction that zk = α2k−1

+ α−2
k−1

. Since one has z2012 = z1, α22011 + α−2
2011

= α+ α−1.
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Set N = 22011 and rewrite the above as α2N + 1 = αN−1 +αN+1, or (αN+1− 1)(αN−1− 1) = 0. Since
N is even, N + 1 and N − 1 are relatively prime. So the equations XN+1 = 1 and XN−1 = 1 have
only the root 1 in common. Therefore there are (N + 1) + (N − 1) − 1 = 2N − 1 possibilities for α.
Meanwhile, any one value of z1 = α+ α−1 corresponds to two choices of α except when α = 1 or −1.
So our 2N − 2 choices of α 6= 1 together give N − 1 different solutions for z1, and α = 1 give a single
solution z = 2. The answer is N = 22011.

14. Compute I =

∫ 1

0

ln(x+ 1)

x2 + 1
dx.

Answer: π ln(2)
8

Let I denote the integral we wish to compute. The function f(x) =
ln(x+ 1)

x2 + 1
does not have an

elementary antiderivative. We will use Taylor series to compute I. We can find the Taylor series for

the function
ln(x+ 1)

x2 + 1
using the following formulas:

ln(x+ 1) = x− x2

2
+
x3

3
− . . .

1

1 + x2
= 1− x2 + x4 − . . .

These formulas aren’t good everywhere, but they do hold in (0, 1). We have

f(x) =

(
x− x2

2
+
x3

3
− x4

4
+ . . .

)(
1− x2 + x4 − x6 + . . .

)
= x+

(
−1

2

)
x2 +

(
1

3
− 1

)
x3 +

(
−1

4
+

1

2

)
x4 +

(
1

5
− 1

3
+ 1

)
x5 + . . .

In particular, an antiderivative is given by

F (x) =
1

2
x2 +

1

3

(
−1

2

)
x3 +

1

4

(
1

3
− 1

)
x4 +

1

5

(
−1

4
+

1

2

)
x5 +

1

6

(
1

5
− 1

3
+ 1

)
x6 + . . .

The definite integral I is given by F (1), i.e., the sum

I =
1

2
+

1

3

(
−1

2

)
+

1

4

(
1

3
− 1

)
+

1

5

(
−1

4
+

1

2

)
+

1

6

(
1

5
− 1

3
+ 1

)
+ . . .

Now we use the facts that

1− 1

3
+

1

5
− 1

7
+ . . . =

π

4

1− 1

2
+

1

3
− 1

4
+ . . . = ln(2),

from the Taylor series for tan−1(x) and ln(x + 1) respectively. Notice that in the above sum, every

number of the form
1

r · s
, where r is even and s is odd, occurs exactly once, with a positive sign if

r + s ≡ 3 (mod 4) and a negative sign if 1 (mod 4). Therefore, it is clear that

I =

(
1− 1

3
+

1

5
− 1

7
+ . . .

)(
1

2
− 1

4
+

1

6
− 1

8
+ . . .

)
=
π

4
· 1

2

(
1− 1

2
+

1

3
− 1

4
+ . . .

)
=
π ln(2)

8
.
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15. Find the smallest α > 0 such that there exists m > 0 making the following equation hold for all positive
integers a, b ≥ 2: (

1

gcd(a, b− 1)
+

1

gcd(a− 1, b)

)
(a+ b)α ≥ m.

Answer: 1
2

Note that both gcd(a, b − 1) and gcd(a − 1, b) divide a + b − 1. Also they are relatively prime, since
gcd(a, b − 1) | a and gcd(a − 1, b) | a − 1. So their product is less than or equal to a + b − 1, and
therefore by the AM-GM inequality we have

1

gcd(a, b− 1)
+

1

gcd(a− 1, b)
≥ 2

√
1

gcd(a, b− 1) · gcd(a− 1, b)
≥ 2√

a+ b− 1
.

Thus α = 1
2 and m = 2 suffice. To show that there is no such m for smaller α, let b = (a− 1)2. Then

gcd(a, b− 1) = a and gcd(a− 1, b) = a− 1, so(
1

gcd(a, b− 1)
+

1

gcd(a− 1, b)

)
(a+ b)α =

(2a− 1)(a2 − a+ 1)α

a(a− 1)

and the limit when a goes to ∞ is zero if α < 1
2 .


