Time limit: 50 minutes.

Instructions: For this test, you work in teams of eight to solve 15 short answer questions. All answers must be expressed in simplest form unless specified otherwise. Submit a single answer sheet for grading. No calculators.

1. Let $ABCD$ be a unit square. The point E lies on BC and F lies on AD. $\triangle AEF$ is equilateral. $GHIJ$ is a square inscribed in $\triangle AEF$ so that GH is on EF. Compute the area of $GHIJ$.

![Diagram of square and equilateral triangle]

2. Find all integers x for which $|x^3 + 6x^2 + 2x - 6|$ is prime.

3. Let A be the set of points (a, b) with $2 < a < 6$, $-2 < b < 2$ such that the equation

$$ax^4 + 2x^3 - 2(2b - a)x^2 + 2x + a = 0$$

has at least one real root. Determine the area of A.

4. Three nonnegative reals x, y, z satisfy $x + y + z = 12$ and $xy + yz + zx = 21$. Find the maximum of xyz.

5. Let $\triangle ABC$ be equilateral. Two points D and E are on side BC (with order B, D, E, C), and satisfy $\angle DAE = 30^\circ$. If $BD = 2$ and $CE = 3$, what is BC?

![Diagram of equilateral triangle with points]

6. Three numbers are chosen at random between 0 and 2. What is the probability that the difference between the greatest and least is less than $\frac{1}{4}$?

7. Tony the mouse starts in the top left corner of a 3x3 grid. After each second, he randomly moves to an adjacent square with equal probability. What is the probability he reaches the cheese in the bottom right corner before he reaches the mousetrap in the center?

8. Let $A = (0, 0)$, $B = (1, 0)$, and $C = (0, 1)$. Divide AB into n equal segments, and call the endpoints of these segments $A = B_0, B_1, B_2, \ldots, B_n = B$. Similarly, divide AC into n equal segments with endpoints $A = C_0, C_1, C_2, \ldots, C_n = C$. By connecting B_i and C_{n-i} for all $0 \leq i \leq n$, one gets a piecewise curve consisting of the uppermost line segments. Find the equation of the limit of this piecewise curve as n goes to infinity.
9. Determine the maximum number of distinct regions into which 2011 circles of arbitrary size can partition the plane.

10. For positive reals $x, y,$ and z, compute the maximum possible value of $\frac{xyz(x + y + z)}{(x + y)^2(y + z)^2}$.

11. Find the diameter of an icosahedron with side length 1 (an icosahedron is a regular polyhedron with 20 identical equilateral triangle faces; a picture is given below).

12. Find the boundary of the projection of the sphere $x^2 + y^2 + (z - 1)^2 = 1$ onto the plane $z = 0$ with respect to the point $P = (0, -1, 2)$. Express your answer in the form $f(x, y) = 0$, where $f(x, y)$ is a function of x and y.

13. Compute the number of pairs of 2011-tuples $(x_1, x_2, ..., x_{2011})$ and $(y_1, y_2, ..., y_{2011})$ such that $x_k = x_{k-1}^2 - y_{k-1}^2 - 2$ and $y_k = 2x_{k-1}y_{k-1}$ for $1 \leq k \leq 2010$, $x_1 = x_{2011}^2 - y_{2011}^2 - 2$, and $y_1 = 2x_{2011}y_{2011}$.

14. Compute $I = \int_0^1 \frac{\ln(x+1)}{x^2+1}dx$.

15. Find the smallest $\alpha > 0$ such that there exists $m > 0$ making the following equation hold for all positive integers $a, b \geq 2$:

$$\left(\frac{1}{\gcd(a,b-1)} + \frac{1}{\gcd(a-1,b)}\right)(a+b)^\alpha \geq m.$$