1. Triangle $A B C$ has side lengths $B C=3, A C=4, A B=5$. Let $P$ be a point inside or on triangle $A B C$ and let the lengths of the perpendiculars from $P$ to $B C, A C, A B$ be $D_{a}, D_{b}, D_{c}$ respectively. Compute the minimum of $D_{a}+D_{b}+D_{c}$.
Answer: $\frac{12}{5}$
Let $M=D_{a}+D_{b}+D_{c}$. Notice that the total area of $A B C$ is $(1 / 2)\left(3 D_{a}+4 D_{b}+5 D_{c}\right)=(1 / 2)\left[5\left(D_{a}+\right.\right.$ $\left.\left.D_{b}+D_{c}\right)-2 D_{a}-D_{b}\right]=(1 / 2)\left(5 M-2 D_{a}-D_{b}\right)$. Of course, since $A B C$ is a right triangle, we know its area is $3 \cdot 4 / 2=6$. We thus have $M=(1 / 5)\left(2 \cdot 6+2 D_{a}+D_{b}\right)$. This is clearly minimized when $D_{a}=D_{b}=0$, that is, when we set $P$ to coincide with $C$. We then have $M=12 / 5$.
Note: it is also possible to conclude this from a few applications of the triangle inequality.
2. Pentagon $A B C D E$ is inscribed in a circle of radius 1. If $\angle D E A \cong \angle E A B \cong \angle A B C, m \angle C A D=60^{\circ}$, and $B C=2 D E$, compute the area of $A B C D E$.
Answer: $\frac{33 \sqrt{3}}{28}$
Looking at cyclic quadrilaterals $A B C D$ and $A C D F$ tells us that $m \angle A C D=m \angle A D C$, so $\triangle A C D$ is equilateral and $m \angle D E A=120^{\circ}$. Now, if we let $m \angle E A D=\theta$, we see that $m \angle C A B=60^{\circ}-\theta \Longrightarrow$ $m \angle A C B=\theta \Longrightarrow \triangle A E D \cong \triangle C B A$. Now all we have to do is calculate side lengths. After creating some $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, it becomes evident that $A C=\sqrt{3}$. Now let $A B=x$, so $B C=2 x$. By applying the Law of Cosines to triangle $A B C$, we find that $x^{2}=\frac{3}{7}$. Hence, the desired area $(A B C D E)=(A C D)+2(A B C)=\frac{(\sqrt{3})^{2} \sqrt{3}}{4}+2 \cdot \frac{1}{2}(x)(2 x)\left(\sin 120^{\circ}\right)=\frac{33 \sqrt{3}}{28}$.
3. Let circle $O$ have radius 5 with diameter $\overline{A E}$. Point $F$ is outside circle $O$ such that lines $\overline{F A}$ and $\overline{F E}$ intersect circle $O$ at points $B$ and $D$, respectively. If $F A=10$ and $m \angle F A E=30^{\circ}$, then the perimeter of quadrilateral $A B D E$ can be expressed as $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$, where $a, b, c$, and $d$ are rational. Find $a+b+c+d$.

## Answer: 15

After some angle chasing, we find that $m \angle D B F=m \angle D F B=75^{\circ}$, which implies that $D F=D B$. Hence the desired perimeter is equal to $A F-B F+A E+F E=20-B F+F E$.
By the law of sines, $\frac{F E}{\sin 30^{\circ}}=\frac{10}{\sin 75^{\circ}} \Longrightarrow F E=\frac{5}{\frac{\sqrt{6}+\sqrt{2}}{4}}=5 \sqrt{6}-5 \sqrt{2}$.
Now, to find $\overline{B F}$, draw the altitude from $O$ to $\overline{A B}$ intersecting $\overline{A B}$ at $P$. This forms a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, so we can see that $A P=5 \sqrt{3} / 2=\frac{10-B F}{2} \Longrightarrow B F=10-5 \sqrt{3}$. Hence, the desired perimeter is $20+(5 \sqrt{6}-5 \sqrt{2})-(10-5 \sqrt{3})=10-5 \sqrt{2}+5 \sqrt{3}+5 \sqrt{6}$, so the answer is $10-5+5+5=15$.
4. Let $A B C$ be any triangle, and $D, E, F$ be points on $\overline{B C}, \overline{C A}, \overline{A B}$ such that $C D=2 B D, A E=2 C E$ and $B F=2 A F . \overline{A D}$ and $\overline{B E}$ intersect at $X, \overline{B E}$ and $\overline{C F}$ intersect at $Y$, and $\overline{C F}$ and $\overline{A D}$ intersect at $Z$. Find $\frac{\operatorname{Area}(\triangle A B C)}{\text { Area }(\triangle X Y Z)}$.

## Answer: 7

Using Menelaus's Theorem on $\triangle A B D$ with collinear points $F, X, C$ and the provided ratios gives $D X / X A=4 / 3$. Using Menelaus's Theorem on $\triangle A D C$ with collinear points $B, Y, E$ gives $A Y / Y D=6$. We conclude that $A X, X Y, Y D$ are in length ratio $3: 3: 1$. By symmetry, this also applies to the segments $C Z, Z X, X F$ and $B Y, Y Z, Z E$. Repeatedly using the fact that the area ratio of two triangles of equal height is the ratio of their bases, we find $[A B C]=(3 / 2)[A D C]=(3 / 2)(7 / 3)[X Y C]=$ $(3 / 2)(7 / 3)(2)[X Y Z]=7[X Y Z]$, or $[A B C] /[X Y Z]=7$.

## Alternate Solution

Stretching the triangle will preserve ratios between lengths and ratios between areas, so we may assume that $\triangle A B C$ is equilateral with side length 3 . We now use mass points to find the length of $X Y$. Assign a mass of 1 to $A$. In order to have $X$ be the fulcrum of $\triangle A B C, C$ have mass 2 and $B$ must have mass 4. Hence, $B X: X E=4: 3$ and $A X: X D=6: 1$, the latter of which also equals $B Y: Y E$ by symmetry. Hence, $X Y=\frac{3}{7} B E$. To find $B E$, we apply the Law of Cosines to $\triangle C B E$ to get that $B E^{2}=1^{2}+3^{2}-2 \cdot 1 \cdot 3 \cdot \cos 60^{\circ}=7 \Longrightarrow X Y=\frac{3 \sqrt{7}}{7}$. Since $\triangle X Y Z$ must be equilateral by symmetry, the desired ratio equals $\left(\frac{A B}{X Y}\right)^{2}=7$.
5. Let $A B C D$ be a cyclic quadrilateral with $A B=6, B C=12, C D=3$, and $D A=6$. Let $E, F$ be the intersection of lines $A B$ and $C D$, lines $A D$ and $B C$ respectively. Find $E F$.
Answer: 10 $\sqrt{2}$


We have $\triangle A D E \sim \triangle C B E$, and their length ratio is $A D: C B=1: 2$. Let $A E=p$ and $D E=q$. Then we have $A B=B E-A E=2 D E-A E=2 q-p$ and $C D=2 p-q$. Solving for $p$ and $q$, we have $p=4$ and $q=5$. Similarly we have $F C=8$ and $F D=10$. Let $\angle B=\theta$. Then $\angle F D E=\pi-\theta$. Apply the Law of Cosines to $\triangle E B F$ to get

$$
E F^{2}=B E^{2}+B F^{2}-2 B E \cdot B F \cdot \cos \theta=10^{2}+20^{2}-2 \cdot 10 \cdot 20 \cos \theta=500-400 \cos \theta
$$

and to $\triangle E D F$ to get

$$
E F^{2}=D E^{2}+D F^{2}+2 \cdot D E \cdot D F \cos \theta=5^{2}+10^{2}-2 \cdot 5 \cdot 10 \cos \theta=125+100 \cos \theta
$$

Solving for $E F^{2}$, we get $E F^{2}=200$.
6. Two parallel lines $l_{1}$ and $l_{2}$ lie on a plane, distance $d$ apart. On $l_{1}$ there are an infinite number of points $A_{1}, A_{2}, A_{3}, \cdots$, in that order, with $A_{n} A_{n+1}=2$ for all $n$. On $l_{2}$ there are an infinite number of points $B_{1}, B_{2}, B_{3}, \cdots$, in that order and in the same direction, satisfying $B_{n} B_{n+1}=1$ for all $n$. Given that $A_{1} B_{1}$ is perpendicular to both $l_{1}$ and $l_{2}$, express the sum $\sum_{i=1}^{\infty} \angle A_{i} B_{i} A_{i+1}$ in terms of $d$.
Answer: $\pi-\tan ^{-1}\left(\frac{1}{d}\right)\left(\right.$ or $\pi / 2+\tan ^{-1} d$ or other equivalent form)


Construct points $C_{1}, C_{2}, C_{3}, \cdots$ on $l_{1}$ progressing in the same direction as the $A_{i}$ such that $C_{1}=$ $A_{1}$ and $C_{n} C_{n+1}=1$. Thus we have $C_{1}=A_{1}, C_{3}=A_{2}, C_{5}=A_{3}$, etc., with $C_{2 n-1}=A_{n}$ in
general. We can write $\angle A_{i} B_{i} A_{i+1}=\angle C_{2 i-1} B_{i} C_{2 i+1}=\angle C_{i} B_{i} C_{2 i+1}-\angle C_{i} B_{i} C_{2 i-1}$. Observe that $\triangle C_{i} B_{i} C_{k}$ (for any $k$ ) is a right triangle with legs of length $d$ and $k-i$, and $\angle C_{i} B_{i} C_{k}=\tan ^{-1} \frac{k-i}{d}$. So $\angle C_{i} B_{i} C_{2 i+1}-\angle C_{i} B_{i} C_{2 i-1}=\tan ^{-1} \frac{i+1}{d}-\tan ^{-1} \frac{i-1}{d}$. The whole sum is therefore

$$
\sum_{i=1}^{\infty}\left(\tan ^{-1} \frac{i+1}{d}-\tan ^{-1} \frac{i-1}{d}\right)
$$

which has $n$th partial sum

$$
\tan ^{-1} \frac{n+1}{d}+\tan ^{-1} \frac{n}{d}-\tan ^{-1} \frac{1}{d}
$$

so it converges to $\pi-\tan ^{-1} \frac{1}{d}$.
7. In a unit square $A B C D$, find the minimum of $\sqrt{2} A P+B P+C P$ where $P$ is a point inside $A B C D$.

Answer: $\sqrt{5}$


Rotate triangle $A P B$ around $A$ by 90 degrees as in the given figure. Let $P^{\prime}$ and $B^{\prime}$ be the rotated images of $P$ and $B$ respectively. Then we have $B^{\prime} P^{\prime}=B P, P^{\prime} P=\sqrt{2} A P$ so

$$
\sqrt{2} A P+B P+C P=C P=P P^{\prime}+P^{\prime} B^{\prime} \leq C B^{\prime}=\sqrt{5}
$$

8. We have a unit cube $A B C D E F G H$ where $A B C D$ is the top side and $E F G H$ is the bottom side with $E$ below $A, F$ below $B$, and so on. Equilateral triangle $B D G$ cuts out a circle from the cube's inscribed sphere. Find the area of the circle.
Answer: $\frac{\pi}{6}$
Consider the cube to be of side length 2 and divide the answer by 4 later. Set the coordinates of the vertices of the cube to be $( \pm 1, \pm 1, \pm 1)$. Then the plane going through an equilateral triangle can be described by the equation $x+y+z=1$. The distance to the plane from the origin is $\frac{1}{\sqrt{3}}$, as $(1 / 3,1 / 3,1 / 3)$ is the foot of the perpendicular from $(0,0,0)$. Thus the radius of the circle is $\sqrt{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}=\sqrt{\frac{2}{3}}$, so the area is $\frac{2}{3} \pi$. In the case of the unit cube we should divide this by 4 to get the answer $\frac{\pi}{6}$.
9. We have a circle $O$ with radius 10 and four smaller circles $O_{1}, O_{2}, O_{3}, O_{4}$ of radius 1 which are internally tangent to $O$, with their tangent points to $O$ in counterclockwise order. The small circles do not intersect each other. Among the two common external tangents of $O_{1}$ and $O_{2}$, let $l_{12}$ be the one which separates $O_{1}$ and $O_{2}$ from the other two circles, and let the intersections of $l_{12}$ and $O$ be $A_{1}$ and $B_{2}$, with $A_{1}$ denoting the point closer to $O_{1}$. Define $l_{23}, l_{34}, l_{41}$ and $A_{2}, A_{3}, A_{4}, B_{3}, B_{4}, B_{1}$ similarly. Suppose that the arcs $A_{1} B_{1}, A_{2} B_{2}$, and $A_{3} B_{3}$ have length $\pi, 3 \pi / 2$, and $5 \pi / 2$ respectively. Find the arc length of $A_{4} B_{4}$.

## Answer: 2 $\boldsymbol{\pi}$

The key is to note that $A_{1} B_{1}+A_{3} B_{3}=A_{2} B_{2}+A_{4} B_{4}$ (in terms of arc length). Proof: let $P_{i}$ be the point of tangency between $O$ and $O_{i}$, for $i=1,2,3,4$. Observe that it is enough to show that
$A_{i} P_{i}=B_{j} P_{j}$ for all $i, j \in\{1,2,3,4\}$ where $j-i \equiv 1(\bmod 4)$. But these two arcs are symmetric with respect to the perpendicular bisector of $l_{i j}$, as all the small circles have the same radius, so our initial claim is correct.
10. Given a triangle $A B C$ with $B C=5, A C=7$, and $A B=8$, find the side length of the largest equilateral triangle $P Q R$ such that $A, B, C$ lie on $Q R, R P, P Q$ respectively.
Answer: $2 \sqrt{43}$


Let $a=B C, b=A C, c=A B$. We claim that in general, the answer is $\sqrt{\frac{2}{3}\left(a^{2}+b^{2}+c^{2}+4 \sqrt{3} S\right)}$, where $S$ is the area of $A B C$.
Suppose that $P Q R$ is an equilateral triangle satisfying the conditions. Then $\angle B P C=\angle C Q A=$ $\angle A R B=60^{\circ}$. The locus of points satisfying $\angle B X C=60^{\circ}$ is part of a circle $O_{a}$. Draw $O_{b}$ and $O_{c}$ similarly. These three circles meet at a single point $X$ inside the triangle, which is the unique point satisfying $\angle B X C=\angle C X A=\angle A X B=120^{\circ}$. Then the choice of $P$ on $O_{a}$ determines $Q$ and $R$ : those two points should also be on $O_{b}$ and $O_{c}$ respectively, and line segments $P C Q$ and $P B R$ should form sides of the triangle. Now one should find the maximum of $P Q$ under these conditions. Note that $\angle B P X$ and $\angle B R X$ do not depend on the choice of $P$, so triangle $P X R$ has the same shape regardless of our choice. In particular, the ratio of $P X$ to $P R$ is constant, so $P R$ is maximized when $P X$ is the diameter of $O_{a}$. This requires $P Q, Q R, R P$ to be perpendicular to $X C, X A, X B$ respectively.
From this point there may be several ways to calculate the answer. One way is to observe that $P Q=\frac{2}{\sqrt{3}}(A X+B X+C X)$ by considering $(P Q R)=(P X Q)+(Q X R)+(R X P) . A X+B X+C X$ can be computed by the usual rotation trick for the Fermat point: rotate $\triangle B X A 60^{\circ}$ around $B$ to $\triangle B X^{\prime} A^{\prime}$. Observe that $\triangle B X X^{\prime}$ is equilateral, and so $A^{\prime}, X^{\prime}, X$, and $C$ are collinear. Hence, $A^{\prime} C=A X+B X+C X$, and we can apply the Law of Cosines to $\triangle A^{\prime} B C$ to get that $A^{\prime} C^{2}=c^{2}+a^{2}-$ $2 a c \cos \left(B+60^{\circ}\right)=a^{2}+c^{2}+2 a c \sin 60^{\circ} \sin B-2 a c \cos 60^{\circ} \cos B=a^{2}+c^{2}+2 S \sqrt{3}-\frac{1}{2}\left(a^{2}+c^{2}-b^{2}\right)=$ $\frac{a^{2}+b^{2}+c^{2}}{2}+2 S \sqrt{3} \Longrightarrow P Q=\sqrt{\frac{2}{3}\left(a^{2}+b^{2}+c^{2}+4 \sqrt{3} S\right)}$ (where $S$ is again the area of $A B C$ ). Plugging in our values for $a, b$, and $c$, and using Heron's formula to find $S=\sqrt{10 * 5 * 3 * 2}=10 \sqrt{3}$, we can calculate $P Q=2 \sqrt{43}$.

