1. Let $F(x)$ be a real-valued function defined for all real $x \neq 0,1$ such that

$$
F(x)+F\left(\frac{x-1}{x}\right)=1+x .
$$

Find $F(2)$.
Answer: $\frac{3}{4}$
Setting $x=2$, we find that $F(2)+F\left(\frac{1}{2}\right)=3$. Now take $x=\frac{1}{2}$, to get that $F\left(\frac{1}{2}\right)+F(-1)=\frac{3}{2}$. Finally, setting $x=-1$, we get that $F(-1)+F(2)=0$. Then we find that

$$
\begin{aligned}
F(2) & =3-F\left(\frac{1}{2}\right)=3-\left(\frac{3}{2}-F(-1)\right)=\frac{3}{2}+F(-1)=\frac{3}{2}-F(2) \\
& \Rightarrow F(2)=\frac{3}{4}
\end{aligned}
$$

Alternate Solution: We can explicitly solve for $F(x)$ and then plug in $x=2$. Notice that for $x \neq 0,1$, $F(x)+F\left(\frac{x-1}{x}\right)=1+x$ so

$$
F\left(\frac{x-1}{x}\right)+F\left(\frac{1}{1-x}\right)=1+\frac{x-1}{x} \text { and } F\left(\frac{1}{1-x}\right)+F(x)=1+\frac{1}{1-x} .
$$

Thus

$$
\begin{aligned}
2 F(x) & =F(x)+F\left(\frac{x-1}{x}\right)-F\left(\frac{x-1}{x}\right)-F\left(\frac{1}{1-x}\right)+F\left(\frac{1}{1-x}\right)+F(x) \\
& =1+x-\left(1+\frac{x-1}{x}\right)+1+\frac{1}{1-x} \\
& =1+x+\frac{1-x}{x}+\frac{1}{1-x} .
\end{aligned}
$$

It follows that $F(x)=\frac{1}{2}\left(1+x+\frac{1-x}{x}+\frac{1}{1-x}\right)$ and the result follows by taking $x=2$.
2. Given that $a_{1}=2, a_{2}=3, a_{n}=a_{n-1}+2 a_{n-2}$, what is $a_{100}+a_{99}$?

Answer: $2^{98} \times 5$

$$
\begin{aligned}
a_{n} & =a_{n-1}+2 a_{n-2} \\
a_{n}+a_{n-1} & =2\left(a_{n-1}+a_{n-2}\right) \\
& =2^{n-2}\left(a_{1}+a_{2}\right)
\end{aligned}
$$

So $a_{100}+a_{99}=2^{98} \times 5$.
3. Let sequence A be $\left\{\frac{7}{4}, \frac{7}{6}, \frac{7}{9}, \ldots\right\}$ where the $j^{\text {th }}$ term is given by $a_{j}=\frac{7}{4}\left(\frac{2}{3}\right)^{j-1}$. Let B be a sequence where the $j^{t h}$ term is defined by $b_{j}=a_{j}^{2}+a_{j}$. What is the sum of all the terms in B ?
Answer: $\frac{861}{80}$
Split B into two series C and D where the terms of C are $c_{j}=a_{j}^{2}=\frac{49}{16}\left(\frac{4}{9}\right)^{j-1}$ and the terms of D are $d_{j}=a_{j}=\frac{7}{4}\left(\frac{2}{3}\right)^{j-1}$. Since both C and D are geometric series with ratios less than 1 , the sum of their terms yields $\frac{49 / 16}{1-4 / 9}=\frac{441}{80}$ and $\frac{7 / 4}{1-2 / 3}=\frac{21}{4}$. Therefore, the sum of the terms in B equals $\frac{441}{80}+\frac{21}{4}=\frac{861}{80}$.
4. Find all rational roots of $|x-1| \times\left|x^{2}-2\right|-2=0$.

Answer: $x=-1,0,2$
There are four intervals to consider, each with their own restrictions. Consider the case in which $x>\sqrt{2}$. Then the equation becomes $(x-1)\left(x^{2}-2\right)-2=x(x-2)(x+1)=0$. Thus, $x=2$ is
the only rational root for $x>\sqrt{2}$. Consider the case in which $-\sqrt{2}<x<1$. Then the equation becomes $(x-1)\left(x^{2}-2\right)-2=x(x-2)(x+1)=0$. Thus, $x=0$ and $x=-1$ are the rational roots for $-\sqrt{2}<x<1$. Consider the case in which $x<-\sqrt{2}$ or the case in which $1<x<\sqrt{2}$. In these cases, the equation becomes $(1-x)\left(x^{2}-2\right)-2=-x^{3}+x^{2}+2 x-4$. By the rational root theorem, the rational roots of this polynomial can only be $\pm 4, \pm 2, \pm 1$ and a quick check shows that none of these are roots, so this polynomial has no rational roots.
5. Let $S=\{1,2,3,4,5,6,7,8,9,10\}$. In how many ways can two (not necessarily distinct) elements a, b be taken from S such that $\frac{a}{b}$ is in lowest terms, i.e. a and b share no common divisors other than 1 ?

Answer: 63

This amounts to determining, for a given numerator, how many elements in S are relatively prime to the numerator. If we let $f(n)$ be the number of positive integers relatively prime to n and less than or equal to 10 , it is obvious that $f(1)=10, f(2)=f(4)=f(8)=5, f(3)=f(9)=7, f(5)=8, f(7)=9$, $f(6)=3$, and $f(10)=4$. Therefore, the answer is $10+3 \cdot 5+2 \cdot 7+8+9+3+4=63$.
6. Find all square numbers which can be represented in the form $2^{a}+3^{b}$, where a, b are nonnegative integers. You can assume the fact that the equation $3^{x}-2^{y}=1$ has no integer solutions if $x \geq 3$.
Answer: $2^{2}, 3^{2}, 5^{2}$
For $b=0$ one has $2^{a}+1=c^{2}, 2^{a}=(c+1)(c-1)$. Thus both $c+1$ and $c-1$ should be powers of 2 . The only possibility is $c=3$, which gives a solution $2^{3}+3^{0}=9=3^{2}$.
For $b \geq 1,2^{a}+3^{b}$ is not divisible by 3 , so it should be $\equiv 1(\bmod 3)$. This requires a to be even. Let $a=2 d$, then $3^{b}=c^{2}-2^{2 d}=\left(c+2^{d}\right)\left(c-2^{d}\right)$. Let $c+2^{d}=3^{p}$ and $c-2^{d}=3^{q}$. Eliminating c, one has $2^{d+1}=3^{p}-3^{q}$. For $q \geq 1$ the right-hand side is divisible by 3 , so $q=0$. From what we know, there are only two solutions $(d, p)=(0,1),(2,2)$. These solutions give $2^{0}+3^{1}=4=2^{2}$ and $2^{4}+3^{2}=25=5^{2}$ respectively.
7. A frog is jumping on the number line, starting at zero and jumping to seven. He can jump from x to either $x+1$ or $x+2$. However, the frog is easily confused, and before arriving at the number seven, he will turn around and jump in the wrong direction, jumping from x to $x-1$. This happens exactly once, and will happen in such a way that the frog will not land on a negative number. How many ways can the frog get to the number seven?

Answer: 146

Let f_{n} be the number of ways to jump from zero to n, ignoring for the time being jumping backwards.. We have $f_{0}=1, f_{1}=1$, and $f_{n}=f_{n-1}+f_{n-2}$ when $n \geq 2$. Therefore, we have that $f_{2}=2, f_{3}=3$, $f_{4}=5, f_{5}=8, f_{6}=13$, and $f_{7}=21$. Note that we can describe the frog's jumping as jumping forward n numbers, jumping backward 1 number, and jumping forward $8-n$ numbers. Therefore, the desired answer is simply $\sum_{i=1}^{6} f_{i} f_{8-i}=146$.
8. Call a nonnegative integer k sparse when all pairs of 1 's in the binary representation of k are separated by at least two zeroes. For example, $9=1001_{2}$ is sparse, but $10=1010_{2}$ is not sparse. How many sparse numbers are less than 2^{17} ?

Answer: 872

Let a_{n} denote the number of sparse numbers with no more than n binary digits. In particular, for numbers with less than n binary digits after removing leading zeroes, append leading zeroes so all numbers have n binary digits when including sufficiently many leading zeroes. We have that $a_{0}=1$, $a_{1}=2$, and $a_{2}=3$ since for these lengths, either zero digits are 1 or one digit is 1 . We claim that the recurrence $a=a_{n-1}+a_{n-3}$ holds for $n \geq 3$. We split this analysis into two cases; numbers where the nth binary digit is 0 or 1 . When the nth binary digit is zero, we can remove that zero to get a valid number with $n-1$ binary digits. When the nth binary digit is one, it is known that the $(n-1)$ th and $(n-2)$ th digits are both zero, so we can truncate those to get a valid number with $n-3$ binary digits. Therefore, the recurrence holds. With the given initial conditions, $a_{17}=872$.
9. Two ants begin on opposite corners of a cube. On each move, they can travel along an edge to an adjacent vertex. Find the probability they both return to their starting position after 4 moves.
Answer: $\frac{49}{729}$
Let the cube be oriented so that one ant starts at the origin and the other at $(1,1,1)$. Let x, y, z be moves away from the origin and $x^{\prime}, y^{\prime}, z^{\prime}$ be moves toward the origin in each the respective directions. Any move away from the origin has to at some point be followed by a move back to the origin, and if the ant moves in all three directions, then it can't get back to its original corner in 4 moves. The number of ways to choose 2 directions is $\binom{3}{2}=3$ and for each pair of directions there are $\frac{4!}{2!2!}=6$ ways to arrange four moves $a, a^{\prime}, b, b^{\prime}$ such that a precedes a^{\prime} and b precedes b^{\prime}. Hence there are $3 \cdot 6=18$ ways to move in two directions. The ant can also move in $a, a^{\prime}, a, a^{\prime}$ (in other words, make a move, return, repeat the move, return again) in three directions so this gives $18+3=21$ moves. There are $3^{4}=81$ possible moves, 21 of which return the ant for a probability of $\frac{21}{81}=\frac{7}{27}$. Since this must happen simultaneously to both ants, the probability is $\frac{7}{27} \cdot \frac{7}{27}=\frac{49}{729}$.
10. An unfair coin has a $2 / 3$ probability of landing on heads. If the coin is flipped 50 times, what is the probability that the total number of heads is even?
Answer: $\frac{1+(1 / 3)^{50}}{2}$
The coin can turn up heads $0,2,4, \ldots$, or 50 times to satisfy the problem. Hence the probability is

$$
P=\binom{50}{0}\left(\frac{2}{3}\right)^{0}\left(\frac{1}{3}\right)^{50}+\binom{50}{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{48}+\cdots+\binom{50}{50}\left(\frac{2}{3}\right)^{50}\left(\frac{1}{3}\right)^{0}
$$

Note that this sum is the sum of the even-powered terms of the expansion $(1 / 3+2 / 3)^{50}$. To isolate these terms, we note that the odd-powered terms of $(1 / 3-2 / 3)^{50}$ are negative. So by adding $(1 / 3+$ $2 / 3)^{50}+(1 / 3-2 / 3)^{50}$, we get rid of the odd-powered terms and we are left with two times the sum of the even terms. Hence the probability is

$$
P=\frac{(1 / 3+2 / 3)^{50}+(1 / 3-2 / 3)^{50}}{2}=\frac{1+(1 / 3)^{50}}{2}
$$

11. Find the unique polynomial $P(x)$ with coefficients taken from the set $\{-1,0,1\}$ and with least possible degree such that $P(2010) \equiv 1(\bmod 3), P(2011) \equiv 0(\bmod 3)$, and $P(2012) \equiv 0(\bmod 3)$.
Answer: $P(x)=1-x^{2}$
First suppose $P(x)$ is constant or linear. Then we have $P(2010)+P(2012)=2 P(2011)$, which is a contradiction because the left side is congruent to $1(\bmod 3)$ and the right is congruent to $0(\bmod 3)$. So P must be at least quadratic. The space of quadratic polynomials in x is spanned by the polynomials $f(x)=1, g(x)=x$, and $h(x)=x^{2}$. Applying each of these to 2010, 2011, and 2012, we have the mod 3 equivalences:

$$
\begin{aligned}
& f(2010,2011,2012) \equiv(1,1,1) \\
& g(2010,2011,2012) \equiv(0,1,2) \\
& h(2010,2011,2012) \equiv(0,1,1)
\end{aligned}
$$

Subtracting the third row from the first, we have $P(x)=f(x)-h(x)=1-x^{2}$, giving $P(2010,2011,2012) \equiv$ $(1,0,0)(\bmod 3)$, as desired. Uniqueness follows from the observation that the three vectors above form a basis for $(\mathbb{Z} / 3 \mathbb{Z})^{3}$.
12. Let $a, b \in \mathbb{C}$ such that $a+b=a^{2}+b^{2}=\frac{2 \sqrt{3}}{3} i$. Compute $|\operatorname{Re}(a)|$.

Answer: $\frac{1}{\sqrt{2}}$
From $a+b=2 \frac{\sqrt{3}}{3} i$ we can let $a=\frac{\sqrt{3}}{3} i+x$ and $b=\frac{\sqrt{3}}{3} i-x$. Then $a^{2}+b^{2}=2\left(\left(\frac{\sqrt{3}}{3} i\right)^{2}+x^{2}\right)=$ $2\left(x^{2}-\frac{1}{3}\right)=\frac{2 \sqrt{3}}{3} i$. So $x^{2}=\frac{1+\sqrt{3} i}{3}=\frac{2}{3} e^{i \pi / 3}, x= \pm \frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}+i}{2}$. Since $|\operatorname{Re}(a)|=|\operatorname{Re}(x)|$, the answer is $\frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2}=\frac{1}{\sqrt{2}}$.
13. Let T_{n} denote the number of terms in $(x+y+z)^{n}$ when simplified, i.e. expanded and like terms collected, for non-negative integers $n \geq 0$. Find

$$
\begin{aligned}
& \sum_{k=0}^{2010}(-1)^{k} T_{k} \\
& =T_{0}-T_{1}+T_{2}-\cdots-T_{2009}+T_{2010}
\end{aligned}
$$

Answer: 1006 ${ }^{2}$

First note that the expression $(x+y+z)^{n}$ is equal to

$$
\sum \frac{n!}{a!b!c!} x^{a} y^{b} z^{c}
$$

where the sum is taken over all non-negative integers a, b, and c with $a+b+c=n$. The number of non-negative integer solutions to $a+b+c=n$ is $\binom{n+2}{2}$, so $T_{k}=\binom{k+2}{2}$ for $k \geq 0$. It is easy to see that $T_{k}=1+2+\cdots+(k+1)$, so T_{k} is the $(k+1)$ st triangular number. If $k=2 n-1$ is odd, then for all positive integers $i, T_{2 i}-T_{2 i-1}=2 i+1$ and therefore ${ }^{1}$

$$
\begin{aligned}
\sum_{j=0}^{k-1}(-1)^{j} T_{j} & =T_{0}+\sum_{j=1}^{n-1}\left(T_{2 j}-T_{2 j-1}\right) \\
& =1+\sum_{j=2}^{n}(2 j-1) \\
& =n^{2}
\end{aligned}
$$

Therefore, since T_{2010} is the 2011th triangular number and $2011=2(1006)-1$, we can conclude that the desired sum is 1006^{2}.
14. Let $M=(-1,2)$ and $N=(1,4)$ be two points in the plane, and let P be a point moving along the x-axis. When $\angle M P N$ takes on its maximum value, what is the x-coordinate of P ?
Answer: 1
Let $P=(a, 0)$. Note that $\angle M P N$ is inscribed in the circle defined by points M, P, and N, and that it intercepts $M N$. Since $M N$ is fixed, it follows that maximizing the measure of $\angle M P N$ is equivalent to minimizing the size of the circle defined by M, P, and N. Since P must be on the x-axis, we therefore want this circle to be tangent to the x-axis. Since the center of this circle must lie on the perpendicular bisector of $M N$, which is the line $y=3-x$, the center of the circle has to be of the form $(a, 3-a)$, so a has to satisfy $(a+1)^{2}+(1-a)^{2}=(a-3)^{2}$. Solving this equation gives $a=1$ or $a=-7$. Clearly choosing $\mathrm{a}=1$ gives a smaller circle, so our answer is 1 .
15. Consider the curves $x^{2}+y^{2}=1$ and $2 x^{2}+2 x y+y^{2}-2 x-2 y=0$. These curves intersect at two points, one of which is $(1,0)$. Find the other one.
Answer: $\left(-\frac{3}{5}, \frac{4}{5}\right)$
From the first equation, we get that $y^{2}=1-x^{2}$. Plugging this into the second one, we are left with

$$
\begin{aligned}
2 x^{2} \pm 2 x \sqrt{1-x^{2}}+1-x^{2}-2 x \mp 2 \sqrt{1-x^{2}}=0 & \Rightarrow(x-1)^{2}=\mp 2 \sqrt{1-x^{2}}(x-1) \\
& \Rightarrow x-1=\mp 2 \sqrt{1-x^{2}} \text { assuming } x \neq 1 \\
& \Rightarrow x^{2}-2 x+1=4-4 x^{2} \Rightarrow 5 x^{2}-2 x-3=0
\end{aligned}
$$

The quadratic formula yields that $x=\frac{2 \pm 8}{10}=1,-\frac{3}{5}$ (we said that $x \neq 1$ above but we see that it is still valid). If $x=1$, the first equation forces $y=0$ and we easily see that this solves the second equation. If $x=-\frac{3}{5}$, then clearly y must be positive or else the second equation will sum five positive terms. Therefore $y=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$. Hence the other point is $\left(-\frac{3}{5}, \frac{4}{5}\right)$.

[^0]16. If r, s, t, and u denote the roots of the polynomial $f(x)=x^{4}+3 x^{3}+3 x+2$, find
$$
\frac{1}{r^{2}}+\frac{1}{s^{2}}+\frac{1}{t^{2}}+\frac{1}{u^{2}}
$$

Answer: $\frac{9}{4}$
First notice that the polynomial

$$
g(x)=x^{4}\left(\frac{1}{x^{4}}+\frac{3}{x^{3}}+\frac{3}{x}+2\right)=2 x^{4}+3 x^{3}+3 x+1
$$

is a polynomial with roots $\frac{1}{r}, \frac{1}{s}, \frac{1}{t}, \frac{1}{u}$. Therefore, it is sufficient to find the sum of the squares of the roots of $g(x)$, which we will denote as r_{1} through r_{4}. Now, note that

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}=\left(r_{1}+r_{2}+r_{3}+r_{4}\right)^{2}-\left(r_{1} r_{2}+r_{1} r_{3}+r_{1} r_{4}+r_{2} r_{3}+r_{2} r_{4}+r_{3} r_{4}\right)=\left(-\frac{a_{3}}{a_{4}}\right)^{2}-\frac{a_{2}}{a_{4}}
$$

by Vieta's Theorem, where a_{n} denotes the coefficient of x^{n} in $g(x)$. Plugging in values, we get that our answer is $\left(-\frac{3}{2}\right)^{2}-0=\frac{9}{4}$.
17. An icosahedron is a regular polyhedron with 12 vertices, 20 faces, and 30 edges. How many rigid rotations G are there for an icosahedron in \mathbb{R}^{3} ?
Answer: 60
There are 12 vertices, each with 5 neighbors. Any vertex and any of its neighbors can be rotated to any other vertex-neighbor pair in exactly one way. There are $5 \cdot 12=60$ vertex-neighbor pairs.
18. Pentagon $A B C D E$ is inscribed in a circle of radius 1. If $\angle D E A \cong \angle E A B \cong \angle A B C, m \angle C A D=60^{\circ}$, and $B C=2 D E$, compute the area of $A B C D E$.
Answer: $\frac{33 \sqrt{3}}{28}$
Looking at cyclic quadrilaterals $A B C D$ and $A C D F$ tells us that $m \angle A C D=m \angle A D C$, so $\triangle A C D$ is equilateral and $m \angle D E A=120^{\circ}$. Now, if we let $m \angle E A D=\theta$, we see that $m \angle C A B=60^{\circ}-\theta \Longrightarrow$ $m \angle A C B=\theta \Longrightarrow \triangle A E D \cong \triangle C B A$. Now all we have to do is calculate side lengths. After creating some $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, it becomes evident that $A C=\sqrt{3}$. Now let $A B=x$, so $B C=2 x$. By applying the Law of Cosines to triangle $A B C$, we find that $x^{2}=\frac{3}{7}$. Hence, the desired area $(A B C D E)=(A C D)+2(A B C)=\frac{(\sqrt{3})^{2} \sqrt{3}}{4}+2 \cdot \frac{1}{2}(x)(2 x)\left(\sin 120^{\circ}\right)=\frac{33 \sqrt{3}}{28}$.
19. Five students at a meeting remove their name tags and put them in a hat; the five students then each randomly choose one of the name tags from the bag. What is the probability that exactly one person gets their own name tag?
Answer: $\frac{3}{8}$
Assume without loss of generality that the first person gets a correct nametag. Let's call the other people $\mathrm{B}, \mathrm{C}, \mathrm{D}$, and E . We can order the four people in nine ways such that none of the persons gets his own nametag; CBED, CDEB, CEBD, DBEC, DEBC, DECB, EBCD, EDBC, EDCB. Therefore, the desired probability is $\frac{9}{4!}=\frac{3}{8}$.
Alternative Solution: The selection of random nametags amounts to a selection of a random permutation of the five students from the symmetric group S_{5}. The condition will be met if and only if the selected permutation σ has exactly one cycle of length one (i.e., exactly one fixed point). The only distinct cycle types with exactly one fixed point are $(1,4)$ and $(1,2,2)$. There are $\frac{5!}{4}=30$ permutations of the first type and $\frac{5!}{2^{3}}=15$ permutations of the second. Thus, the desired probability is $\frac{30+15}{5!}=\frac{3}{8}$.
20. Find the 2011th-smallest x, with $x>1$, that satisfies the following relation:

$$
\sin (\ln x)+2 \cos (3 \ln x) \sin (2 \ln x)=0 .
$$

Answer: $x=e^{2011 \pi / 5}$
Set $y=\ln x$, and observe that

$$
2 \cos (3 y) \sin (2 y)=\sin (3 y+2 y)-\sin (3 y-2 y)=\sin (5 y)-\sin (y)
$$

so that the equation in question is simply

$$
\sin (5 y)=0
$$

The solutions are therefore

$$
\ln x=y=\frac{n \pi}{5} \Longrightarrow x=e^{n \pi / 5} \quad \text { for all } n \in \mathbb{N}
$$

21. An ant is leashed up to the corner of a solid square brick with side length 1 unit. The length of the ant's leash is 6 units, and it can only travel on the ground and not through or on the brick. In terms of $x=\arctan \left(\frac{3}{4}\right)$, what is the area of region accessible to the ant?
Answer: $\frac{79 \pi}{2}+\frac{3}{2}-5 x$

Label the top left corner of the square as the origin O. By keeping the leash straight, the ant can travel through $\frac{3}{4}$ of a circle of radius $6\left(A_{1}=\frac{3}{4} \times 36 \pi=27 \pi\right)$. The ant can also bend the leash around the two nearest corners of the square to where it is leashed ($A_{2}=2 \times \frac{1}{4} \times 25 \pi=\frac{25}{2} \pi$). However, this double counts the area enclosed by BCDE , which is equal to two times the area of BCD . To calculate the latter, notice that ACD is the sector of the circle centered at A with radius 5 . We can calculate the coordinates of D usign the two equations $y=-x$ (from the symmetry) and $x^{2}+(y+1)^{2}=5^{2}$ which yields $D=(4,-4)$. Since $A=(0,-1)$, the angle of sector ACD is arctan $\left(\frac{3}{4}\right)=x$. The area of triangle ABD equals $\frac{3}{2}$ (base times height) so BCD has area $5 x-\frac{3}{2}$ and BCDE has area $10 x-3$. Hence, the total area is $A_{1}+A_{2}-\left(5 x-\frac{3}{2}\right)=\frac{79 \pi}{2}+\frac{3}{2}-5 x$.
22. Compute the sum of all n for which the equation $2 x+3 y=n$ has exactly 2011 nonnegative $(x, y \geq 0)$ integer solutions.

Answer: 72381

Observe that if the equation $a x+b y=n$ has m solutions, the equation $a x+b y=n+a b$ has $m+1$ solutions. Also note that $a x+b y=a x_{0}+b y_{0}$ for $0 \leq x_{0}<b, 0 \leq y_{0}<a$ has no other solution than $(x, y)=\left(x_{0}, y_{0}\right)$. (It is easy to prove both if you consider the fact that the general solution has form $\left(x^{\prime}+b k, y^{\prime}-a k\right)$.) So there are $a b$ such n and their sum is

$$
\sum_{\substack{0 \leq x<b \\ 0 \leq y<a}}(a x+b y+2010 a b)=2010 a^{2} b^{2}+\frac{a b(2 a b-a-b)}{2}
$$

23. Let $A B C$ be any triangle, and D, E, F be points on $\overline{B C}, \overline{C A}, \overline{A B}$ such that $C D=2 B D, A E=2 C E$ and $B F=2 A F . \overline{A D}$ and $\overline{B E}$ intersect at $X, \overline{B E}$ and $\overline{C F}$ intersect at Y, and $\overline{C F}$ and $\overline{A D}$ intersect at Z. Find $\frac{\operatorname{Area}(\triangle A B C)}{\text { Area }(\triangle X Y Z)}$.

Answer: 7

Using Menelaus's Theorem on $\triangle A B D$ with collinear points F, X, C and the provided ratios gives $D X / X A=4 / 3$. Using Menelaus's Theorem on $\triangle A D C$ with collinear points B, Y, E gives $A Y / Y D=6$. We conclude that $A X, X Y, Y D$ are in length ratio $3: 3: 1$. By symmetry, this also applies to the segments $C Z, Z X, X F$ and $B Y, Y Z, Z E$. Repeatedly using the fact that the area ratio of two triangles of equal height is the ratio of their bases, we find $[A B C]=(3 / 2)[A D C]=(3 / 2)(7 / 3)[X Y C]=$ $(3 / 2)(7 / 3)(2)[X Y Z]=7[X Y Z]$, or $[A B C] /[X Y Z]=7$.

Alternate Solution

Stretching the triangle will preserve ratios between lengths and ratios between areas, so we may assume that $\triangle A B C$ is equilateral with side length 3 . We now use mass points to find the length of $X Y$. Assign a mass of 1 to A. In order to have X be the fulcrum of $\triangle A B C, C$ have mass 2 and B must have mass 4. Hence, $B X: X E=4: 3$ and $A X: X D=6: 1$, the latter of which also equals $B Y: Y E$ by symmetry. Hence, $X Y=\frac{3}{7} B E$. To find $B E$, we apply the Law of Cosines to $\triangle C B E$ to get that $B E^{2}=1^{2}+3^{2}-2 \cdot 1 \cdot 3 \cdot \cos 60^{\circ}=7 \Longrightarrow X Y=\frac{3 \sqrt{7}}{7}$. Since $\triangle X Y Z$ must be equilateral by symmetry, the desired ratio equals $\left(\frac{A B}{X Y}\right)^{2}=7$.
24. Let $P(x)$ be a polynomial of degree 2011 such that $P(1)=0, P(2)=1, P(4)=2, \ldots$, and $P\left(2^{2011}\right)=$ 2011. Compute the coefficient of the x^{1} term in $P(x)$.

Answer: $2-\frac{1}{\mathbf{2}^{2010}}$
We analyze $Q(x)=P(2 x)-P(x)$. One can observe that $Q(x)-1$ has the powers of 2 starting from $1,2,4, \cdots$, up to 2^{2010} as roots. Since Q has degree 2011, $Q(x)-1=A(x-1)(x-2) \cdots\left(x-2^{2010}\right)$ for some A. Meanwhile $Q(0)=P(0)-P(0)=0$, so

$$
Q(0)-1=-1=A(-1)(-2) \cdots\left(-2^{2010}\right)=-2^{(2010 \cdot 2011) / 2} A
$$

Therefore $A=2^{-(1005 \cdot 2011)}$. Finally, note that the coefficient of x is same for P and $Q-1$, so it equals $A\left(-2^{0}\right)\left(-2^{1}\right) \cdots\left(-2^{2010}\right)\left(\left(-2^{0}\right)+\left(-2^{-1}\right)+\cdots+\left(-2^{-2010}\right)\right)=\frac{A \cdot 2^{1005 \cdot 2011}\left(2^{2011}-1\right)}{2^{2010}}=2-\frac{1}{2^{2010}}$.
25. Find the maximum of

$$
\frac{a b+b c+c d}{a^{2}+b^{2}+c^{2}+d^{2}}
$$

for reals a, b, c, and d not all zero.
Answer: $\frac{\sqrt{5}+1}{4}$
One has $a b \leq \frac{t}{2} a^{2}+\frac{1}{2 t} b^{2}, b c \leq \frac{1}{2} b^{2}+\frac{1}{2} c^{2}$, and $c d \leq \frac{1}{2 t} c^{2}+\frac{t}{2} d^{2}$ by AM-GM. If we can set t such that $\frac{t}{2}=\frac{1}{2 t}+\frac{1}{2}$, it can be proved that $\frac{a b+b c+c d}{a^{2}+b^{2}+c^{2}+d^{2}} \leq \frac{\frac{t}{2}\left(a^{2}+b^{2}+c^{2}+d^{2}\right)}{a^{2}+b^{2}+c^{2}+d^{2}}=\frac{t}{2}$, and this is maximal because we can set a, b, c, d so that the equality holds in every inequality we used. Solving this equation, we get $t=\frac{1+\sqrt{5}}{2}$, so the maximum is $\frac{t}{2}=\frac{\sqrt{5}+1}{4}$.

[^0]: ${ }^{1}$ For a quick visual proof of this fact, we refer the reader to http://www.jstor.org/stable/2690575.

