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1. If f(x) = (x− 1)4(x− 2)3(x− 3)2, find f ′′′(1) + f ′′(2) + f ′(3).

Answer: 0

A polynomial p(x) has a multiple root at x = a if and only if x− a divides both p and p′. Continuing
inductively, the nth derivative p(n) has a multiple root b if and only if x − b divides p(n) and p(n+1).
Since f(x) has 1 as a root with multiplicity 4, x−1 must divide each of f, f ′, f ′′, f ′′′. Hence f ′′′(1) = 0.
Similarly, x−2 divides each of f, f ′, f ′′ so f ′′(2) = 0 and x−3 divides each of f, f ′, meaning f ′(3) = 0.
Hence the desired sum is 0.

2. A trapezoid is inscribed in a semicircle of radius 2 such that one base of the trapezoid lies along the
diameter of the semicircle. Find the largest possible area of the trapezoid.

Answer: 3
√
3

Clearly, a trapezoid with maximal area will have a base equal to the diameter. If x is the height of the

trapezoid, then the area of a trapezoid is h(b1+b2)
2 = A(x) =

(
2 +
√

4− x2
)
· x so the maximum occurs

when

0 = A′(x) = 2 +
√

4− x2 − x2√
4− x2

=
2
√

4− x2 + 4− 2x2√
4− x2

,

which is equivalent to
4(4− x2) = (2x2 − 4)2 = 4x4 − 16x2 + 16.

Collecting like terms gives 4x4 = 12x2, and since x 6= 0 (the degenerate case), we get that x =
√

3.
Thus the desired maximum occurs at x =

√
3 and so the maximum area is

A(
√

3) =
(
2 +
√

4− 3
)
·
√

3 = 3
√

3.

3. A sector of a circle has angle θ. Find the value of θ, in radians, for which the ratio of the sector’s area
to the square of its perimeter (the arc along the circle and the two radial edges) is maximized. Express
your answer as a number between 0 and 2π.

Answer: 2

Suppose that the circle has radius r. Then the area of the circle is πr2, so the area of the sector is
θ
2ππr

2 = 1
2θr

2. The arc of the perimeter of the sector has length θ
2π2πr = θr, and the two straight

edges of the sector each has length r, so the perimeter has length θr + 2r = (θ + 2)r, and hence the
square of the perimeter is (θ + 2)2r2. The ratio that we want to maximize is therefore

1
2θr

2

(θ + 2)2r2
=

θ

2(θ + 2)2
.

To do this, differentiate to find the critical points:

0 =
d

dθ

(
θ

2(θ + 2)2

)
=

2(θ + 2)2 − 4θ(θ + 2)

4(θ + 2)4
=

2(θ + 2)− 4θ

4(θ + 2)3
=

2− θ
2(θ + 2)3

=⇒ θ = 2.

Observe that the derivative is decreasing at θ = 2, which implies that this is a local maximum, as
desired.

Alternate Solution:

Equivalently, we can minimize the reciprocal:

0 =
d

dθ

(
2(θ + 2)2

θ

)
= 2

d

dθ

(
4θ−1 + 4 + θ

)
= 2

(
−4θ−2 + 1

)
=⇒ θ2 = 4 =⇒ θ = 2.

4. Let f(x) = x3ex
2

1−x2 . Find f (7)(0), the 7th derivative of f evaluated at 0.

Answer: 12600
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Since f (n)(0) = ann!, where an is the nth Taylor series coefficient, we just need to find the Taylor series
of f and read off the appropriate coefficient. The Taylor series is given by

f(x) = x3
(

1 +
x2

1!
+
x4

2!
+ · · ·

)(
1 + x2 + x4 + · · ·

)
.

The coefficient of x7 is 1
2! + 1

1! + 1 = 5
2 , so f (7)(0) = 7! · 52 = 12600.

5. The real-valued infinitely differentiable function f(x) is such that f(0) = 1, f ′(0) = 2, and f ′′(0) = 3.
Furthermore, f has the property that

f (n)(x) + f (n+1)(x) + f (n+2)(x) + f (n+3)(x) = 0

for all n ≥ 0, where f (n)(x) denotes the nth derivative of f . Find f(x).

Answer: 2e−x − cosx+ 4 sinx

We solve the differential equation f + f ′ + f ′′ + f ′′′ = 0. Let f + f ′ = g. Then we need to solve
g + g′′ = 0, which has solution g(x) = a cosx+ b sinx. Then

ex(f + f ′) = (exf)′ = aex cosx+ bex sinx,

so that

f = e−x
(∫

(aex cosx+ bex sinx) dx+ c

)
= ce−x + a′ cosx+ b′ sinx.

Finally, we find f(0) = c+ a′, f ′(0) = −c+ b′, and f ′′(0) = c− a′ and solve for a′, b′, c.

Alternate Solution: Observe that since the given equation holds for all n, by moving the index
up one and then subtracting, we get f (n)(x) − f (n+4)(x) = 0, so that f (n)(x) = f (n+4)(x). That
is, any function that satisfies the given equation must also have the property that the derivatives
repeat in cycles of 4. However, as we will see, this is only a necessary property, not a sufficient one.
The characteristic equation of the given differential equation is λn+4 − λn = 0, or λn(λ4 − 1) = 0.
The roots of this equation are 0 and the fourth roots of unity, so a complete set of solutions is
given by f(x) = aex + be−x + ceix + de−ix (the terms eix and e−ix can be written in terms of sine
and cosine, as is boxed above). Note however, that aex does not satisfy the original differential
equation as all of its derivatives have the same sign. Relabelling the constants, the solution set is
f(x) = ae−x + beix + ce−ix = ae−x + b(cosx+ i sinx) + c(cosx− i sinx).

6. Compute

∫ π

−π

x2

1 + sinx+
√

1 + sin2 x
dx.

Answer: π3

3

Use symmetry around the origin. Substitute x to −x, so the integral is now∫ π

−π

x2 dx

1− sinx+
√

1 + sin2 x
.

Add the two integrals, and note that

1

1 + sinx+
√

1 + sin2 x
+

1

1− sinx+
√

1 + sin2 x
=

2 + 2
√

1 + sin2 x

2 + sin2 x+ 2
√

1 + sin2 x− sin2 x
= 1,

so the integral is the same as 1
2

∫ π
−π x

2dx = π3

3 .

7. For the curve sin(x) + sin(y) = 1 lying in the first quadrant, find the constant α such that

lim
x→0

xα
d2y

dx2
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exists and is nonzero.

Answer: 3
2

Differentiate the equation to get

cos(x) +
dy

dx
cos(y) = 0

and again to get

− sin(x) +
d2y

dx2
cos(y)−

(
dy

dx

)2

sin(y) = 0.

By solving these we have
dy

dx
= −cos(x)

cos(y)

and
d2y

dx2
=

sin(x) cos2(y) + sin(y) cos2(x)

cos3(y)
.

Let sin(x) = t, then sin(y) = 1 − t. Also cos(x) =
√

1− t2 and cos(y) =
√

1− (1− t)2 =
√
t(2− t).

Substituting gives
d2y

dx2
=
t2(2− t) + (1− t)(1− t2)

t3/2(2− t)3/2
= t−3/2

1− t+ t2

(2− t)3/2
.

Since limx→0
t
x = 1, α = 3

2 should give the limit limx→0 x
α d

2y
dx2 = 1

2
√
2
.

8. Compute

∫ 2

1
2

tan−1 x

x2 − x+ 1
dx.

Answer: π2
√

3
18

Take y = 1/x, then dx
x2−x+1 = − dy

y2−y+1 . Note furthermore by the tangent addition formula that

tan−1(x) + tan−1(y) = π/2. The original integral is equal to the average of these two integrals:

1

2

(∫ 2

1
2

tan−1 x

x2 − x+ 1
dx+

∫ 2

1
2

π
2 − tan−1 y

y2 − y + 1
dy

)
=
π

4

∫ 2

1/2

dx

x2 − x+ 1
.

Substitute x =
√
3
2 θ + 1/2, then

π

4

∫ 2

1/2

dx

x2 − x+ 1
=
π

4

4

3

√
3

2

∫ √3

0

1

θ2 + 1
dθ =

π2
√

3

18
.

9. Solve the integral equation

f(x) =

∫ x

0

ex−yf ′(y) dy − (x2 − x+ 1)ex.

Answer: f(x) = (2x− 1)ex

Differentiate both sides to get

f ′(x) =
d

dx
ex
∫ x

0

e−yf ′(y) dy − d

dx
(x2 − x+ 1)ex

f ′(x) = f ′(x) +

∫ x

0

ex−yf ′(y) dy − (x2 + x)ex.

But ∫ x

0

ex−yf ′(y) dy = f(x) + (x2 − x+ 1)ex
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so by substituting it we get

f(x) + (x2 − x+ 1)ex − (x2 + x)ex = 0,

and f(x) = (2x− 1)ex.

10. Compute the integral ∫ π

0

ln(1− 2a cosx+ a2) dx

for a > 1.

Answer: 2π ln a

Solution 1:

This integral can be computed using a Riemann sum. Divide the interval of integration [0, π] into n
parts to get the Riemann sum

π

n

[
ln
(
a2 − 2a cos

π

n
+ 1
)

+ ln

(
a2 − 2a cos

2π

n
+ 1

)
+ · · ·+ ln

(
a2 − 2a cos

(n− 1)π

n
+ 1

)]
.

Recall that

cos θ =
eiθ + e−iθ

2
.

We can rewrite this sum of logs as a product and factor the inside to get

π

n
ln

[
n−1∏
k=1

(
a2 − 2a cos

kπ

n
+ 1

)]
=
π

n
ln

[
n−1∏
k=1

(
a− ekπi/n

)(
a− e−kπi/n

)]
.

The terms e±kπi/n are all of the 2n-th roots of unity except for ±1, so the inside product contains all
of the factors of a2n − 1 except for a− 1 and a+ 1. The Riemann sum is therefore equal to

π

n
ln
a2n − 1

a2 − 1

To compute the value of the desired integral, we compute the limit of the Riemann sum as n → ∞;
this is

lim
n→∞

π

n
ln
a2n − 1

a2 − 1
= lim
n→∞

π ln
n

√
a2n − 1

a2 − 1
= lim
n→∞

π ln a2 = 2π ln a.

(This is problem 471 of Răzvan Gelca and Titu Andreescu’s book Putnam and Beyond. The solution
is due to Siméon Poisson.)

Solution 2:

Let the desired integral be I(a), where we think of this integral as a function of the parameter a. In
this solution, we differentiate by a to convert the desired integral to an integral of a rational function
in cosx:

d

da
I(a) =

d

da

∫ π

0

ln(1− 2a cosx+ a2) dx =

∫ π

0

2a− 2 cosx

1− 2a cosx+ a2
dx.

All integrals of this form can be computed using the substitution t = tan x
2 . Then x = 2 arctan t, so

dx = 2
1+t2 dt and

cosx = cos(2 arctan t) = 2 cos(arctan t)2 − 1 = 2

(
1

1 + t2

)
− 1 =

1− t2

1 + t2
,

so our integral becomes

d

da
I(a) =

∫ ∞
0

2a− 2 1−t2
1+t2

1− 2a 1−t2
1+t2 + a2

2

1 + t2
dt = 4

∫ ∞
0

a(1 + t2)− (1− t2)

(1 + t2)− 2a(1− t2) + a2(1 + t2)

1

1 + t2
dt

= 4

∫ ∞
0

(a+ 1)t2 + (a− 1)

((a+ 1)2t2 + (a− 1)2)(1 + t2)
dt =

2

a

∫ ∞
0

a2 − 1

(a+ 1)2t2 + (a− 1)2
dt+

2

a

∫ ∞
0

1

1 + t2
dt.
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In the first integral, we do the substitution t = a−1
a+1u. Then dt = a−1

a+1du and we have

=
2

a

∫ ∞
0

1

1 + u2
du+

2

a

∫ ∞
0

1

1 + t2
dt =

2

a

(π
2

+
π

2

)
=

2π

a
.

Therefore, our desired integral is the integral of the previous quantity, or

I =

∫ π

0

ln(1− 2a cosx+ a2) dx = 2π ln a.

Solution 3:

We use Chebyshev polynomials1. First, define the Chebyshev polynomial of the first kind to be
Tn(x) = cos(n arccosx). This is a polynomial in x, and note that Tn(cosx) = cos(nx). Note that

cos((n+ 1)x) = cosnx cosx− sinnx sinx

cos((n− 1)x) = cosnx cosx+ sinnx sinx,

so that cos((n+ 1)x) = 2 cosnx cosx− cos((n− 1)x) and hence the Chebyshev polynomials satisfy the
recurrence Tn+1(x) = 2xTn(x)− Tn−1(x).

Therefore, the Chebyshev polynomials satisfy the generating function

∞∑
n=0

Tn(x)tn =
1− tx

1− 2tx+ t2
.

Now, substituting x 7→ cosx and t 7→ a−1, we have

∞∑
n=0

cos(nx)a−n = a
a− cosx

a2 − 2a cosx+ 1
.

So

2

∞∑
n=0

cos(nx)a−n−1 =
2a− 2 cosx

1− 2a cosx+ a2
.

Then∫ π

0

2a− 2 cosx

1− 2a cosx+ a2
dx = 2

∫ π

0

∞∑
n=0

cos(nx)a−n−1 dx = 2

∞∑
n=0

(
a−n−1

∫ π

0

cos(nx) dx

)
= 2πa−1.

Now, since

ln(1− 2a cosx+ a2) =

∫
2a− 2 cosx

1− 2a cosx+ a2
da,

we see that ∫ π

0

ln(1− 2a cosx+ a2) dx =

∫
2πa−1 da = 2π ln a.

Solution 4:

We can also give a solution based on physics. By symmetry, we can evaluate the integral from 0 to 2π
and divide the answer by 2, so∫ π

0

ln(1− 2a cosx+ a2) dx =

∫ 2π

0

ln
√

1− 2a cosx+ a2 dx.

Now let’s calculate the 2D gravitational potential of a point mass falling along the x axis towards a
unit circle mass centered around the origin. We set the potential at infinity to 0. We also note that,

1http://en.wikipedia.org/wiki/Chebyshev_polynomials



SMT 2011 Calculus Test and Solutions February 19, 2011

since the 2D gravitational force between two masses is proportional to 1
r , the potential between two

masses is proportional to − ln r. So to calculate the gravitational potential, we integrate − ln r over
the unit circle. But if the point mass is at (a, 0), then the distance between the point mass and the
section of the circle at angle x is

√
1− 2a cosx+ a2. So we get the integral

−
∫ 2π

0

ln
√

1− 2a cosx+ a2 dx

This is exactly the integral we want to calculate! We can also calculate this potential by concentrating
the mass of the circle at its center. The circle has mass 2π and its center is distance a from the point
mass. So the potential is simply −2π ln a. Thus, the final answer is 2π ln(a).

Solution 5:

This problem also has a solution which uses the Residue Theorem from complex analysis. It is easy to
show that

2

∫ π

0

ln(1− 2a cos(x) + a2) dx =

∫ 2π

0

ln(1− 2a cos(x) + a2) dx.

Furthermore, observe that 1− 2a cosx+ a2 = (a− eix)(a− e−ix). Thus, our integral is

I =
1

2

(∫ 2π

0

ln[(a− eix)(a− e−ix)]dx

)
=

1

2

(∫ 2π

0

ln(a− eix)dx+

∫ 2π

0

ln(a− e−ix)dx

)
,

where the integrals are performed on the real parts of the logarithms in the second expression. In the
first integral, substitute z = eix, dz = ieix dx = iz dx; the resulting contour integral is∮

‖z‖=1

ln(a− z)
iz

dz.

By the Residue Theorem, this is equal to 2πiResz=0
ln(a−z)
iz = 2π ln(a). The second integral is identical.

Thus, the final answer is 1
2 (4π ln(a)) = 2π ln(a).


