
May 12, 2019

Novice: Number of Solves

whatever 37 groot 13

thor 35 hawkeye 22

assemble 24 blackpanther 6

scarletwitch 26 thanos 4

Novice: Fastest Solves (minutes)

whatever 0 groot 35

thor 1 hawkeye 11

assemble 5 blackpanther 41

scarletwitch 8 thanos 62

Advanced: Number of Solves

assemble 29 blackwidow 5

ironman 24 asgardians 0

vision 9 hulk 0

captainamerica 4 spiderman 0

titan 5

Advanced: Fastest Solves (minutes)

assemble 2 blackwidow 54

ironman 8 asgardians N/A

vision 10 hulk N/A

captainamerica 42 spiderman N/A

titan 68

ProCo 2019
Speed Round

Solutions

Novice Solutions

● We first look at how many cubes with side length “a” can fit along one
direction of cubes with side length “b”

● This quantity is (b/a)--using integer division
● Thus we can fit (b/a) cubes in each direction, since a cube is

symmetric
● We can fit a total of (b/a)*(b/a)*(b/a) number of cubes
● This solution runs in O(1) time

thor

● Observations:
○ The most frequent substring will be of length 1
○ The least frequent substring will be the entire string (1 substring)

● For the least frequent substring, we just count the frequency of every
letter and output the max

● For the most frequent substring, we just output the entire string
● This runs in O(n) time

assemble

● Note that we can ignore trailing 1’s and leading 0’s. We can treat this
as just chopping those digits off the string

● Otherwise we can just reverse the entire string and look at the string
again.

● We don’t have to physically reverse the string, just look at it forwards
or backwards

● Keep track of how many reverses we do
● This runs in O(n) time

scarletwitch

● Movement is deterministic and can be easily simulated in O(n) time.
● Since there are n instructions and only 4 types of instructions, there

are only 3n possible single-command changes, and we can just try all
of them.

● This leads to an O(n2) solution.
● It is possible to update the end position in O(1) time by keeping both

the change in position and the change in orientation of each suffix and
prefix of instructions. This was not necessary for the problem.

groot

● Create a min heap/priority queue and insert all numbers into it.
● Repeat until min heap is empty:

○ extract two minimum elements from the heap
○ add their sum to the heap
○ Update the total cost

● We have n inserts and the loop is repeated n-1 times, each insert()
and getMin() is O(log n). So the algorithm is O(n log n).

● We also accept O(n2 log n) solutions that use an array/list and sort it
after every insert().

hawkeye

● Notice the number of operations we can do is less than 9. We can
brute force.

● Try all permutations of the order of numbers and see which ordering is
maximal

● This O(n! * n) solution runs in time since n <= 9

blackpanther

● Think about two planets with periods A and B (assume A<B). After D
days, planet 1 has travelled D/A rotations and planet 2 has travelled
D/B. If they’re “in line” then their difference is an integer number of
rotations:

● D/A - D/B = an integer k → D(B-A)/AB = k → D = kAB/(B-A)
● We need all n planets in line, so planet 1 is in line with 2, 1 is in line

with 3, … 1 is in line with n
● We get n-1 fractions

thanos

● Our final answer fraction must be an integer multiple of all these
fractions. (A “Lowest Common Multiple” but for fractions)

● For two fractions: A/B and C/D → find smallest common denominator
G, so A’/G and C’/G, then find the lcm of integers A’ and C’

● Use the Euclidean Algorithm to find GCF, then LCM(x,y)=xy/GCF(x,y)
● Find the lcm of the first two fractions. Then the lcm of this answer and

the next fraction etc.
● This runs in O(n) time

○ Careful: numbers get large

thanos

Advanced Solutions

● The “relative ordering” of a sequence of numbers a_1, a_2,..., a_n is a
permutation of 1,2,..., n if where the smallest number is replaced by 1, the
second smallest is 2, ... , largest is n.

● Observation: If you swap two rows, the relative ordering of each row is
unchanged. If you swap two columns, all of the relative orderings of rows
change in the same way.
○ The same is true for the relative ordering of rows

● Output Yes if all the rows have the same relative ordering and all the
columns have the same relative ordering (as other columns, can be
distinct from the rows)
○ Note that any relative ordering is sortable. If there are two distinct

relative orderings in rows, if you sort one, the other cannot be sorted.
● Runs in O(n^2log(n))

ironman

● We can notice that the prime factorization of n^3 must be the same as
the prime factorization c(m^2)

● We can greedily choose the smallest numbers to build n and m
● Sieve of Eratosthenes to find primes from 1 to 10^6
● Prime factorize c
● To build n and m consider each pe in X:

○ If e=1,2: pe should be in n and m
○ If e > 2: the smallest exponents for p in n and m are:

■ If p = 3k: n has pk, m has p0

■ p= 3k+1: n has pk+1, m has p1

■ p = 3k+2: n has pk+2, m has p2

● Careful: This process might get n=m. If so, multiply n by 4 and m by 8
● O(Nlog(N)+Q)

vision

● Type 0 operations add exactly one triangle when (u, v) is an existing
edge.

● Type 1 operations will only remove triangles.
● So, there can only be up to q triangles, and each triangle is inserted

and removed at most once.
● For every edge (u,v) store the set of vertices that are connected to u

and v, with a set (i.e. all the triangles including (u,v))
● Process all the operations in O(q log q) time.

captainamerica

● Can assume all heights will be the same (as the max height)
● For two towers at (x1,y1,z1) and (x2,y2,z2) find an equation for the

minimum height they need to be to see each other:
○ Angle between them = arccos(x1x2+y1y2+z1z2)
○ Min Height = 1/cos(angle/2) - 1

● Solution 1: Kruskal’s Algorithm
○ Sort all pairs of towers by increasing tower height needed
○ Use a union-find data structure to find the minimum height needed

to make everything one connected component
● Solution 2: Binary Search

○ For a given height H, link all the pairs with min height <= H
○ See if everything is connected

● Runs in O(N^2 logN) and O(N^2 log(max height)) respectively

titan

● Maintain a map mp from box number to expected number of balls
● Initially the expected number of balls for the ith box is ai
● To update mp after operation [l, r], iterate over the keys in that range

and compute the sum of the values
● After iterating over a key, remove it from the map
● Set mp[l] and mp[r] to sum/2 (if l = r we don’t do anything)
● Runtime is O((n + m)logn)

○ For each operation, we add at most 2 entries to the map so the
total number of additions to the map is at most n + 2*m

○ We can only remove an entry from a map once, so the total number
of removals across all operations is O(n + m)

blackwidow

● Create graph of 26 nodes (one for each letter)
● If we have to change letter c1 to c2 at some point, create directed

edge from c1 to c2.
● Impossible cases:

○ Some letter needs to be changed to two different letters
■ S = abba and T = abca

○ Edges (of all 26 nodes) form a set of simple cycles (self-loops
count as cycles) unless everything is a self-loop (in which case the
strings are identical)

asgardians

● Answer: number of edges in the graph (excluding self-loops) + number of
simple cycles (excluding self-loops)

● Resolve tree components: process changes from root outwards
● Resolve flower components: change a to c, then resolve the tree rooted

at a

● Resolve cycle components:
○ Let d be a leaf node of some flower that has already been resolved
○ Change a to d and resolve the tree rooted at a
○ Change d back to a (creates an additional unit of cost for a cycle)

● This solution runs in O(n)

asgardians

b
c

a

b

ca

● Only need to consider grids where all diagonals are the same
character

abcd abcd
qwer -> bcdr
asdf cdrf
xzcv drfv

- Hence, all we need is a sequence of 2n - 1 characters that does not
contain any bigram or trigram as a substring.

- If n = 1, any character works.
- Otherwise, build a graph!

hulk

● Make a node ab if the bigram ab is not in the list of bigrams.
● Make an edge from ab to bc if the trigram abc is not in the list.
● Find a path containing 2n - 2 nodes in this graph.
● If there is a cycle, you can make a path of any length by repeating it.
● Otherwise, the graph is a directed acyclic graph, so you can find the

longest path in it in O(V + E) time, where V is at most 26^2 and E is at
most 26^3.

hulk

● For a fixed partitioning scheme, always pick x to be the most frequent
value. So cost = length of array minus sum of largest frequencies.

● Define dp(i, j) = sum of frequencies for each subarray of the first i
elements into j subarrays AND ai is the value we are using for the jth
subarray
○ Can use the second condition because there always exists a

solution with the right endpoint of every subarray equal to the
most frequent in that subarray

spiderman

● At ai, we have two cases:
○ Start a new subarray for the ith element:

■ dp(i, j) = 1 + max(dp(i’, j - 1)) for all i’ < i.
○ Extend some subarray:

■ dp(i, j) = 1 + dp(prv[ai], j) where prv[x] is the most recent index
in which we saw ai

● Answer = N - max(dp(i, j)) for all i and j
● This runs in O(NK)

spiderman

