

May 12, 2019

Novice: Number of Solves

whatever	37	groot	13
thor	35	hawkeye	22
assemble	24	blackpanther	6
scarletwitch	26	thanos	4

Novice: Fastest Solves (minutes)

whatever	0	groot	35
thor	1	hawkeye	11
assemble	5	blackpanther	41
scarletwitch	8	thanos	62

Advanced: Number of Solves

assemble	29	blackwidow	5
ironman	24	asgardians	0
vision	9	hulk	0
captainamerica	4	spiderman	0
titan	5		

Advanced: Fastest Solves (minutes)

assemble	2	blackwidow	54
ironman	8	asgardians	N/A
vision	10	hulk	N/A
captainamerica	42	spiderman	N/A
titan	68		

ProCo 2019

Speed Round Solutions

Novice Solutions

thor

- We first look at how many cubes with side length "a" can fit along one direction of cubes with side length "b"
- This quantity is (b/a)--using integer division
- Thus we can fit (b/a) cubes in each direction, since a cube is symmetric
- We can fit a total of $(b / a)^{*}(b / a)^{*}(b / a)$ number of cubes
- This solution runs in $\mathrm{O}(1)$ time

assemble

- Observations:
- The most frequent substring will be of length 1
- The least frequent substring will be the entire string (1 substring)
- For the least frequent substring, we just count the frequency of every letter and output the max
- For the most frequent substring, we just output the entire string
- This runs in $\mathrm{O}(\mathrm{n})$ time

scarletwitch

- Note that we can ignore trailing 1's and leading 0's. We can treat this as just chopping those digits off the string
- Otherwise we can just reverse the entire string and look at the string again.
- We don't have to physically reverse the string, just look at it forwards or backwards
- Keep track of how many reverses we do
- This runs in $\mathrm{O}(\mathrm{n})$ time

groot

- Movement is deterministic and can be easily simulated in $O(n)$ time.
- Since there are n instructions and only 4 types of instructions, there are only $3 n$ possible single-command changes, and we can just try all of them.
- This leads to an $O\left(n^{2}\right)$ solution.
- It is possible to update the end position in $\mathrm{O}(1)$ time by keeping both the change in position and the change in orientation of each suffix and prefix of instructions. This was not necessary for the problem.

hawkeye

- Create a min heap/priority queue and insert all numbers into it.
- Repeat until min heap is empty:
- extract two minimum elements from the heap
- add their sum to the heap
- Update the total cost
- We have n inserts and the loop is repeated $\mathrm{n}-1$ times, each insert() and getMin() is $\mathrm{O}(\log n)$. So the algorithm is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.
- We also accept $O\left(n^{2} \log n\right.$) solutions that use an array/list and sort it after every insert().

blackpanther

- Notice the number of operations we can do is less than 9 . We can brute force.
- Try all permutations of the order of numbers and see which ordering is maximal
- This $\mathrm{O}\left(\mathrm{n}!{ }^{*} \mathrm{n}\right)$ solution runs in time since $\mathrm{n}<=9$

thanos

- Think about two planets with periods A and B (assume $\mathrm{A}<\mathrm{B}$). After D days, planet 1 has travelled D/A rotations and planet 2 has travelled D/B. If they're "in line" then their difference is an integer number of rotations:
- $\mathrm{D} / \mathrm{A}-\mathrm{D} / \mathrm{B}=$ an integer $\mathrm{k} \rightarrow \mathrm{D}(\mathrm{B}-\mathrm{A}) / \mathrm{AB}=\mathrm{k} \rightarrow \mathrm{D}=\mathrm{kAB} /(\mathrm{B}-\mathrm{A})$
- We need all n planets in line, so planet 1 is in line with 2,1 is in line with $3, \ldots 1$ is in line with n
- We get $\mathrm{n}-1$ fractions

thanos

- Our final answer fraction must be an integer multiple of all these fractions. (A "Lowest Common Multiple" but for fractions)
- For two fractions: A/B and C/D \rightarrow find smallest common denominator G, so A'/G and C'/G, then find the Icm of integers A' and C'
- Use the Euclidean Algorithm to find GCF, then LCM(x, y) $=x y / G C F(x, y)$
- Find the Icm of the first two fractions. Then the Icm of this answer and the next fraction etc.
- This runs in O(n) time
- Careful: numbers get large

Advanced Solutions

ironman

- The "relative ordering" of a sequence of numbers a $1, \mathrm{a} _2, \ldots$, a n is a permutation of $1,2, \ldots, n$ if where the smallest number is replaced by 1 , the second smallest is $2, \ldots$, largest is n.
- Observation: If you swap two rows, the relative ordering of each row is unchanged. If you swap two columns, all of the relative orderings of rows change in the same way.
- The same is true for the relative ordering of rows
- Output Yes if all the rows have the same relative ordering and all the columns have the same relative ordering (as other columns, can be distinct from the rows)
- Note that any relative ordering is sortable. If there are two distinct relative orderings in rows, if you sort one, the other cannot be sorted.
- Runs in $\mathrm{O}\left(\mathrm{n}^{\wedge} 2 \log (\mathrm{n})\right)$

vision

- We can notice that the prime factorization of $n^{\wedge} 3$ must be the same as the prime factorization $c\left(m^{\wedge} 2\right)$
- We can greedily choose the smallest numbers to build n and m
- Sieve of Eratosthenes to find primes from 1 to $10^{\wedge} 6$
- Prime factorize c
- To build n and m consider each p^{e} in X :
- If $e=1,2$: p^{e} should be in n and m
- If $e>2$: the smallest exponents for p in n and m are:
- If $p=3 k$: n has p^{k}, m has p^{0}
- $p=3 k+1: n$ has p^{k+1}, m has p^{1}
- $p=3 k+2: n$ has p^{k+2}, m has p^{2}
- Careful: This process might get $n=m$. If so, multiply n by 4 and m by 8
- $\mathrm{O}(\mathrm{Nlog}(\mathrm{N})+\mathrm{Q})$

captainamerica

- Type 0 operations add exactly one triangle when (u, v) is an existing edge.
- Type 1 operations will only remove triangles.
- So, there can only be up to q triangles, and each triangle is inserted and removed at most once.
- For every edge (u, v) store the set of vertices that are connected to u and v , with a set (i.e. all the triangles including (u, v))
- Process all the operations in $\mathrm{O}(\mathrm{q} \log \mathrm{q})$ time.

titan

- Can assume all heights will be the same (as the max height)
- For two towers at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ find an equation for the minimum height they need to be to see each other:
- Angle between them $=\arccos \left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)$
- Min Height = 1/cos(angle/2) - 1
- Solution 1: Kruskal's Algorithm
- Sort all pairs of towers by increasing tower height needed
- Use a union-find data structure to find the minimum height needed to make everything one connected component
- Solution 2: Binary Search
- For a given height H , link all the pairs with min height <= H
- See if everything is connected
- Runs in $\mathrm{O}\left(\mathrm{N}^{\wedge} 2 \log \mathrm{~N}\right)$ and $\mathrm{O}\left(\mathrm{N}^{\wedge} 2 \log (m a x\right.$ height $)$) respectively

O\&CMMOMOM

- Maintain a map mp from box number to expected number of balls
- Initially the expected number of balls for the ith box is a_{i}
- To update mp after operation [l, r], iterate over the keys in that range and compute the sum of the values
- After iterating over a key, remove it from the map
- Set mp[l] and mp[r] to sum/2 (if I = r we don't do anything)
- Runtime is $\mathrm{O}((\mathrm{n}+\mathrm{m}) \operatorname{logn})$
- For each operation, we add at most 2 entries to the map so the total number of additions to the map is at most $\mathrm{n}+2^{*} \mathrm{~m}$
- We can only remove an entry from a map once, so the total number of removals across all operations is $\mathrm{O}(\mathrm{n}+\mathrm{m})$

asgardians

- Create graph of 26 nodes (one for each letter)
- If we have to change letter c_{1} to c_{2} at some point, create directed edge from C_{1} to C_{2}.
- Impossible cases:
- Some letter needs to be changed to two different letters
- S = abba and T = abca
- Edges (of all 26 nodes) form a set of simple cycles (self-loops count as cycles) unless everything is a self-loop (in which case the strings are identical)

asgardians

- Answer: number of edges in the graph (excluding self-loops) + number of simple cycles (excluding self-loops)
- Resolve tree components: process changes from root outwards
- Resolve flower components: change a to c, then resolve the tree rooted at a
- Resolve cycle components:

- Let d be a leaf node of some flower that has already been resolved
- Change a to d and resolve the tree rooted at a
- Change d back to a (creates an additional unit of cost for a cycle)
- This solution runs in $\mathrm{O}(\mathrm{n})$

hulk

- Only need to consider grids where all diagonals are the same character

abcd		abcd
qwer	$->$	$b c d r$
asdf		$c d r f$
xzcv		drfv

- Hence, all we need is a sequence of $2 n-1$ characters that does not contain any bigram or trigram as a substring.
- If $n=1$, any character works.
- Otherwise, build a graph!

hulk

- Make a node $a b$ if the bigram $a b$ is not in the list of bigrams.
- Make an edge from $a b$ to $b c$ if the trigram $a b c$ is not in the list.
- Find a path containing $2 n-2$ nodes in this graph.
- If there is a cycle, you can make a path of any length by repeating it.
- Otherwise, the graph is a directed acyclic graph, so you can find the longest path in it in $\mathrm{O}(\mathrm{V}+\mathrm{E})$ time, where V is at most $26^{\wedge} 2$ and E is at most $26^{\wedge} 3$.

spiderman

- For a fixed partitioning scheme, always pick x to be the most frequent value. So cost = length of array minus sum of largest frequencies.
- Define $\mathrm{dp}(\mathrm{i}, \mathrm{j})=$ sum of frequencies for each subarray of the first i elements into j subarrays AND a_{i} is the value we are using for the j th subarray
- Can use the second condition because there always exists a solution with the right endpoint of every subarray equal to the most frequent in that subarray

spiderman

- At $a_{i j}$, we have two cases:
- Start a new subarray for the ith element:
- $\mathrm{dp}(\mathrm{i}, \mathrm{j})=1+\max \left(\mathrm{dp}\left(\mathrm{i}^{\prime}, \mathrm{j}-1\right)\right)$ for all $i^{\prime}<i$.
- Extend some subarray:
- $\operatorname{dp}(\mathrm{i}, \mathrm{j})=1+\operatorname{dp}\left(\operatorname{prv}\left[\mathrm{a}_{\mathrm{i}}\right], \mathrm{j}\right)$ where $\operatorname{prv}[\mathrm{x}]$ is the most recent index in which we saw a_{i}
- Answer = N $-\max (\mathrm{dp}(\mathrm{i}, \mathrm{j}))$ for all i and j
- This runs in O(NK)

