The talk will concern two remarkable facts:

(1) For the first forty non-negative integers \(n \), the polynomial \(n^2 + n + 41 \) is prime!

(2) The value of \(e^{\pi \sqrt{163}} \) is within \(10^{-12} \) of an integer.

These two facts turn out to be closely linked to each other, and in fact are best understood in terms of the arithmetic properties of numbers of the form \((a + b\sqrt{-163})/2 \) with integers \(a \) and \(b \). In the course of explaining this, I will tell a truncated version of the engrossing history of Gauss' class number problem.