1. Answer: $\frac{\sqrt{5} - 1}{4}$.

Consider:

$$\sin 18^\circ = \cos 72^\circ = 2 \cos^2 36^\circ - 1 = 2(1 - 2 \sin^2 18^\circ)^2 - 1$$

$$= 1 - 8 \sin^2 18^\circ + 8 \sin 18^\circ$$

$$0 = 8x^4 - 8x^2 - x + 1 = (x - 1)(2x^2 + 2x + 1).$$

Clearly, $x \neq 1, \frac{-1}{2}$, because $0 < \sin 18^\circ < \sin 90^\circ = 1$. We solve the remaining term:

$$0 = 4x^2 + 2x + 1 \implies x = \frac{-2 \pm \sqrt{4 + 4(4)}}{2(4)} = \frac{-1 \pm \sqrt{5}}{4}.$$

The only root that is within our bounds is $\frac{\sqrt{5} - 1}{4}$.

2. Answer: $\frac{44}{15} + \frac{4}{15}i$.

Consider:

$$30123 = 3 + \sum_{n=0}^{\infty} 0(2i)^{-(4n+1)} + \sum_{n=0}^{\infty} 1(2i)^{-(4n+2)} + \sum_{n=0}^{\infty} 2(2i)^{-(4n+3)} + \sum_{n=0}^{\infty} 3(2i)^{-(4n+4)}$$

$$= 3 + \sum_{n=0}^{\infty} \left[-\frac{1}{4} \left(\frac{1}{16} \right)^n + \frac{i}{4} \left(\frac{1}{16} \right)^n + \frac{3}{16} \left(\frac{1}{16} \right)^n \right]$$

$$= 3 + \sum_{n=0}^{\infty} \left(-\frac{1}{16} + \frac{1}{4}i \right) \left(\frac{1}{16} \right)^n$$

$$= 3 + \frac{16}{15} \left(-\frac{1}{16} + \frac{1}{4}i \right)$$

$$= \frac{44}{15} + \frac{4}{15}i.$$

This is a trivial application of Ramsey Theory. It is isomorphic to Problem 2 of the Power Round. Consider one of the people, P, in the group, and that he or she may or may not have met last year. Assume without loss of generality that P met at least three of them last year: A, B, and C. If any two of these met each other last year, then those two and P all met each other last year. Alternatively, none of A, B, and C met each other last year.

4. Answer: $\frac{1}{16} \cos 5\theta + \frac{5}{16} \cos 3\theta + \frac{5}{8} \cos \theta$

Notice that

$$\cos(n\theta) + i \sin(n\theta) = (\cos \theta + i \sin \theta)^n = z^n$$

and

$$\cos(-n\theta) + i \sin(-n\theta) = (\cos \theta + i \sin \theta)^{-n} = z^{-n}.$$.

Adding these two equations, we get that $\cos(n\theta) = (z^n + z^{-n})/2$. Then $(\cos(\theta))^5 = (z + z^{-1})^5/32$.

Expanding yields the binomial coefficients:

$$(z + z^{-1})^5 = z^5 + 5z^4(z^{-1}) + 10z^3(z^{-2}) + 10z^2(z^{-3}) + 5z(z^{-4}) + z^{-5}.$$.

Then

$$(z + z^{-1})^5/32 = \frac{1}{16}(z^5 + z^{-5})/2 + \frac{5}{16}(z^3 + z^{-3})/2 + \frac{5}{8}(z + z^{-1})/2 = \frac{1}{16} \cos 5\theta + \frac{5}{16} \cos 3\theta + \frac{5}{8} \cos \theta.$$
5. **Answer:** $2^{2011} - 1$

 We evaluate the inner sum by the Hockey Stick Identity. This identity is
 \[
 \sum_{i=r}^{n} \binom{i}{r} = \binom{n+1}{r+1} \implies \sum_{i=j}^{2010} \binom{i}{j} = \binom{2011}{j+1},
 \]
 so that
 \[
 \sum_{j=0}^{2010} \sum_{i=j}^{2010} \binom{i}{j} = \sum_{j=0}^{2010} \binom{2011}{j+1}.
 \]
 Now, using the fact that
 \[
 \sum_{i=0}^{n} \binom{n}{i} = 2^n,
 \]
 we obtain
 \[
 \sum_{j=0}^{2010} \binom{2011}{j+1} = \sum_{j=1}^{2011} \binom{2011}{j} = \sum_{j=0}^{2011} \binom{2011}{j} - \binom{2011}{0} = 2^{2011} - 1.
 \]

6. **Answer:** 96

 The number of blue cells is $n + m - 1$; the number of total cells is nm. So $2010(m + n - 1) = nm$, or $nm - 2010n - 2010m + 2010 = 0$. This factors as $(n - 2010)(m - 2010) - 2010^2 + 2010 = 0$, or $(n-2010)(m-2010) = 2010-2009$. Thus each of $n-2010$ and $m-2010$ must be one of the positive factors of $2010 + 2009$; for each positive factor, there is one ordered pair. Since $2010 \cdot 2009 = 2 \cdot 3 \cdot 5 \cdot 7^2 \cdot 41 \cdot 67$, there are $2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32$ solutions.

7. **Answer:** $\frac{1}{p} - 1$

 Let the probability that a bug’s descendant’s die out be x. There are two ways for the bugs to die out: either the initial bug dies (with probability $1-p$), or the bug successfully splits (probability p) and both of its descendants die out (each with probability x). Therefore, $x = (1-p) + px^2$. Solving this quadratic equation yields the two solutions $x = 1$ and $x = \frac{1}{p} - 1$. Which is correct?

 Define p_n to be the probability that the bug dies out within n generations. Then, by the same reasoning as before, $p_{n+1} = (1-p) + pp_n^2$. From the definition of p_n, we see that the sequence is always increasing. We will show that $p_n < \frac{1}{p} - 1$ for every n, which would imply that $x = \frac{1}{p} - 1$ is the correct solution.

 This can be done by induction. Notice that $p_0 = 0 < \frac{1}{p} - 1$. Now, suppose that $p_k < \frac{1}{p} - 1$ for some k. Then,
 \[
 p_{k+1} = (1-p) + pp_k^2 < (1-p) + p\left(\frac{1}{p} - 1\right)^2 = 1-p + p\left(\frac{1}{p^2} - 2\frac{1}{p} + 1 \right) = 1-p + \frac{1}{p} - 2 + p = \frac{1}{p} - 1.
 \]
 This completes the induction, so we indeed have $p_n < \frac{1}{p} - 1$, and hence the correct answer is indeed $\frac{1}{p} - 1$.

8. **Answer:** $(1, 1)$ and $(3, 2)$

 From that $3^1 \equiv 3$, $3^2 \equiv 9$, $3^3 \equiv 11$, $3^4 \equiv 1 \mod 16$, we can see that $3^y \not\equiv 1 \mod 16$. Thus $2^x \not\equiv 0 \mod 16$, so x is at most 3. The solutions are $(1, 1)$ and $(3, 2)$.

9. **Answer:** 4

 If (x, y) is a solution, then x and y are roots of the quadratic equation $t^2 + at + b = (t-x)(t-y) = 0$. Then $-a = x + y$ and $b = xy$. We find that $x^2 + y^2 = a^2 - 2b = 9$ and $\frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy} = \frac{-b}{9} = 9$. So $a = -9b$. Substituting this in the first equation, we get $81b^2 - 2b - 9 = 0$. This has two roots for b, both of them real. Therefore there are two corresponding values of a, both real. In each case, the quadratic leads to two ordered pairs, which gives four total ordered pairs. It is easy to check that they are, indeed, distinct.
10. **Answer:** 120

Note that \(n^2 \equiv 0, 1, 4 \mod 5 \). We consider three cases.

Case 1: \(n^2 \equiv 0 \mod 5 \), so that \(\lfloor \frac{n^2}{5} \rfloor = \frac{n^2}{5} \). In this case, \(n \equiv 0 \mod 5 \), so \(n = 5a \) for some integer \(a \). Then \(\frac{n^2}{5} = 5a^2 \), which is not prime unless \(a = 1 \). Therefore, for this case, \(n = 5 \) is the only value of \(n \) for which \(\lfloor \frac{n^2}{5} \rfloor \) is prime.

Case 2: \(n^2 \equiv 1 \mod 5 \), so that \(\lfloor \frac{n^2}{5} \rfloor = \frac{n^2 - 1}{5} = \frac{(n - 1)(n + 1)}{5} \). In this case, we have either \(n = 5a + 1 \) or \(n = 5a - 1 \) for some integer \(a \). Then \(\frac{n^2}{5} = a(n \pm 1) \), which cannot be prime if \(a \neq 1 \). Therefore, for this case, \(n = 4, 6 \) are the only values of \(n \) for which \(\lfloor \frac{n^2}{5} \rfloor \) might be prime. We can check that these values of \(n \) do indeed yield primes 3 and 7.

Case 3: \(n^2 \equiv 4 \mod 5 \), so that \(\lfloor \frac{n^2}{5} \rfloor = \frac{n^2 - 4}{5} = \frac{(n - 2)(n + 2)}{5} \). In this case, we have either \(n = 5a + 2 \) or \(n = 5a - 2 \) for some integer \(a \). Then \(\frac{n^2}{5} = a(n \pm 2) \), which cannot be prime if \(a \neq 1 \). Therefore, for this case, \(n = 3, 7 \) are the only values of \(n \) for which \(\lfloor \frac{n^2}{5} \rfloor \) might be prime. None of these values actually yield primes however, as they give \(\lfloor \frac{n^2}{5} \rfloor = 1, 9 \).

Therefore, the only values of \(n \) for which \(\lfloor \frac{n^2}{5} \rfloor \) is prime are \(n = 4, 5, 6 \), and the product of these values of \(n \) is 120.

Generalization: Note that this procedure can be carried out when the denominator 5 is replaced by any other number whose quadratic residues are all perfect squares. Which numbers satisfy this property?